A Deductive Learning of Heart Disease Dataset by using K Means Clustering

Arulanantham Zechariah Jebakumar^{1*}, Dr. R. Ravanan²

¹Lecturer, Prince Sultan Military College of Health Sciences, Dhahran PO Box: 33048, Dammam – 31448,

Kingdom of Saudi Arabia.

²Joint Director of Collegiate Education, Chennai region, Chennai-15, Tamilnadu, India

Corresponding author: Arulanantham Zechariah Jebakumar

Email: zechariah@psmchs.edu.sa

Abstract

Cardiovascular diseases is one of the most significant causes of mortality in today's world. Cardiovascular diseases are the number one cause of death globally with 17.9 million death cases each year. CVDs are concertedly contributed by hypertension, diabetes, overweight and unhealthy lifestyles. Exploratory Data Analysis is a preprocessing step to understand the data. There are numerous methods and steps in performing EDA, however, most of them are specific, focusing on visualization and distribution. If the number of cluster is 2, this model has 43% & 57% of cluster instances for full training set and 46% & 54% of cluster instances for 66% training set, if the number of cluster is 3, this model has 18% 48% & 34% of cluster instances for full training set and 25%, 50% & 25% of cluster instances for 66% training set, if the number of cluster is 4, this model has 21%,40%,10% & 28% of cluster instances for full training set and 24%,13%,26% and 37% of cluster instances for 66% training set, If the number of cluster is 5, this model has 17%,31%,11%,19% & 21% of cluster instances for full training set and 23%,14%,20%,33% &11% of cluster instances for 66% training set, If the number of cluster is 6, this model has 10%,31%,15%,20%,6% &18% of cluster instances for full training set and 16%,18%,15%,22%,13% &15% of cluster instances for 66% training set. In this system proposes the optimal results for build the deductive learning model. Based on the time consumption the system recommends that cluster 2, 3 and 5 have zero second taken the time consumption for build the model in 66% training set. 0.01 seconds for cluster 6 and 0.03 seconds for cluster 4 in 66% training set models. Cluster 5 and 6 have low sum of squared errors for full training and 66% training set comparatively other models.

Keywords: K Means clustering, Centroids, Sum of Squared Errors, Iterations.

Introduction

In this section presents introduction of this research work. 17.9 million people die every year due to heart diseases accounting for 31% of all the deaths in the world. [1]Thus, it is important for early and accurate detection of heart diseases.[2] 4 out of 5 Heart disease patients die due to a heart attack or a stroke, and one-third of the deaths occur prematurely in patients below 70 years of age.[3] Heart disease proves to be the leading cause of death for both men and women.[4] This affects the human life very badly. The diagnosis of heart disease in most cases depends on a complex combination and huge volume of clinical and pathological data. Machine learning has been shown to be effective assisting in making decisions and predictions from the large quantity of data produced by the health care industry.[5] Patients with a high risk of heart diseases demonstrate

raised blood pressure, glucose, and lipids along with overweight, and obesity. [6]Lifestyle also plays an important factor in heart diseases along with physiological factors. [7]Tobacco use, unhealthy diet, excessive alcohol intake, and inadequate physical activity are leading reasons for heart diseases.[8]Identifying such people and ensuring they are given appropriate treatment could prevent premature deaths.

In this paper presents section 2 of this paper explains the detail on the related works. In section 3 presents the materials and methods adopted and section 4 presents the details of the experiments and discussions. Finally section 5 concludes the paper by sharing our inferences and future plans.

Related Works

In this section presents focuses the related works of this research work. The accuracy and precision statistics for different algorithms such as Support Vector machines, KNN, Decision Trees, and Neural networks being most popular.[9]TheUCI dataset for comparison of different classifiers such as Multilayer perceptron, Naive Bayes, KNN etc. and validated that SVM with boosting hyper parameters outperformed others.[10] The machine learningtechniques providing the accuracy of 88.7% in prediction of cardiovascular diseases with a hybrid random forest and linear model.[11]New selection features and methods can be adopted to get broader perception of performance.[12]The traditional machine learning algorithms that aim in improving the accuracy of heart disease prediction. [13]The UK Biobank dataset observed that rather than complex models, information gain was better by consideration of different risk factors.a south African dataset consisting of 462 instances for analyzing algorithms such as Naive Bayes, SVM, and decision trees. [14] Naive bayes obtained good accuracy results however specificity and sensitivity results can be improved with more instances.[15]the accuracy of decision trees in the prediction of heart diseases with the help of a dataset consisting of 573 instances. More number of attributes and hyper parameters can result in better performance classification.[16] Association rules, clustering and other data mining algorithms prove to be useful to mine huge amounts of unstructured data. [17]Various kernel implementations with certain rulebased classifiers.[18]It concludes that the RBF kernel is best for infinite data and Hyper parameter tuning can be added to make the model more effective. [19]

Materials and Methods

In this section presents the materials and methods of this research work. This research work focuses exploratory data analysis and using Weka 3.8.3. The dataset used in this work is UCI Heart Disease dataset. It has 76 features (attributes) from 303 patients. This work uses the dataset consisting of 270 patients with 14 features set.

S.No	Attribute	Description of the Attribute	Type of the Attribute	Range
1	age	Age in years	Continuous	Minimum = 29 Maximum = 77
2	sex	0=Female ; 1=Male	Binary	Male=183

 Table 1: Meta Data Description

				Female=87
3	chest pain type (cp)	Type of the chest pain	Categorical	Asymtomatic=129 Non Angina=79 Atypical Angina=42 Typical Angina=20
4	resting blood pressure (restbps)	in mm Hg on admission to the hospital	Continuous	Minimum=94 Maximum=200 Mean= 131.34 StdDeviation=17.86
5	serum cholestoral (chol)	serum cholestoral in mg/dl	Continuous	Minimum=126 Maximum=564 Mean= 249.66 StdDeviation=51.69
6	fasting blood sugar (fbs)	0=false; 1=true	Binary	False=230 True=40
7	Resting ECG (restecg)	(fbs>120 mg/dl) 0=Normal ; 1=Having ST-T wave abnormality; 2=Showing probable or define left ventricular hypertrophy	Categorical	Normal=131 ST-T Wave Abnormality=2 Left Ventriclar Hypertrophy=137
8	maximum heart rate achieved (thalach)	maximum heart rate reached	Continuous	Minimum=71 Maximum=202 Mean= 149.68 StdDeviation=23.17
9	exercise induced angina (exang)	0=No; 1=Yes	Binary	No=181 Yes=89
10	oldpeak	ST depreve to restserelatission induced by exercise relative to rest	Continuous	Minimum=0 Maximum=6.2 Mean= 1.05 StdDeviation=1.145
11	slope	the slope of the peak exercise ST segment 0=upsloping; 1=Flat; 2=Downsloping	Categorical	Flat=122 Upsloping=130 Downsloping=18
12	ca	number of major vessels(0-3) colored by flourosopy 0=Typical Angina 1=Atypical Angina 2=Non Anginal Pain 3=Asymptomatic	Categorical	Typical Angina=160 Atypical Angina=58 Non AnginalPain=33 Asymptomatic=19
13	thal	1=normal; 2=fixed defect; 3=reversible defect	Categorical	Normal=152 Fixed Defect=14 Reversible Defect=104
14	diagnosis of heart disease (Target or Class)	angiographic disease status 0=Disease; 1=No Disease	Binary	Disease=151 No Disease=119

Results and Discussion

In this section focuses the results and discussions of this research work. This project covers exploratory data analysis like data visualization and implementing K means clustering approaches by using Weka 3.8.3.

Figure 2: Data Visualization for all Attributes

😧 Weka Explorer: Visualizing Cardio Data Set	- 0 X
X: Class (Nom)	Y: Class (Nom)
Colour: Class (Nom)	Select Instance
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
N O D B B B B B B B B B B B B B B B B B B	
	No Disease
Class colour Disease	No Disease
旹 🔎 🌀 🛓 📙 Saravanan 🥦 Adobe Re 🧭 Weka GUI 🧭 Weka	Exp 🕜 All attribu 🔗 Weka Exp 🔗 Weka Exp 🔗 Weka Exp 📲 2 - Micro 🖒 💻 ९ 🌾 (4)) 🐿 🚍 😚 606 PM //1/0/2021 🖏

Figure 3: Visualization of Target Attribute

🐼 Weka Explorer: Visualizing Cardio Data Set	– 0 X
X: Class (Nom)	V (Y: Class (Nom)
Colour: Thal (Nom)	Polyline
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
N D L S e a a s e k X X	
Disease	No Disease
Class colour	
Normal Reversit	le defect Fixed Defect
📲 🔎 🎯 🛓 📙 Saravanan 🖊 Adobe Re 🧭 Weka GUI 🏈	Veka Exp 🔗 All attribu 🔗 Weka Exp 🔗 Weka Exp 🕜 Weka Exp 🕡 2 - Micro 🕨 💻 ९ 🖟 (40) 🐿 📼 607 PM 1/10/2021 🖏

Figure 4: Visualization of ThalAttribute

Weka Explorer: Visualizing Cardio Data Set	- 0 X
X: Class (Nom)	Y: Class (Nom)
Colour: CA (Nom)	Select Instance
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
N D D D D D D D D D D D D D D D D D D D	
Class colour	
Asymtomatic Typical Angina	Asypical Angina - Non Anginal Pain
📲 🔎 🌀 🛓 📙 Saravanan 📕 Adobe Read 🧭 Weka GUI C 🧭) Weka Explo 🧭 All attributes 🕜 Weka Explo 🔗 Weka Explo 🔞 2 - Microsof 🖒 💻 🔨 🌾 4% 🖘 🥅 609 PM 1/10/2021 🖏

Figure 5: Visualization of CA Attribute

🕢 Weka Explorer: Visualizing Cardio Data Set				– Ø ×
X: Class (Nom)	v (Y	Y: Class (Nom)		•
Colour: Slope (Nom)	T [5	Select Instance		•
Reset Clear	Open Save		Jitter	0
Plot: Cardio Data Set				
N D D B e a s e e a s e e x x x x			×××××××××××××××××××××××××××××××××××××××	
Disease			No Disease	
Class colour				
Flat	Upsloping		Downsloping	
手 🔎 🌍 🛓 📙 Saravanan	🧏 Adobe Read 🦪 Weka GUI C 🦪 W	Veka Explo 🧭 All attributes 🤇	🕜 Weka Explo 🦪 Weka Explo 🛛 🖉	? - Microsof ト 💻 🤨 🧖 如》 🐨 📰 6:09 PM 🔢

Figure 6: Visualization of Slop Attribute

(Olaza (Naza)		(V. Olana (Ulam)	
. Class (Nom)		Y. Class (Nom)	
Colour: Oldpeak (Num)	T	Select Instance	Ĭ
Reset Clear Open	Save	Jitter	(
ot: Cardio Data Set			
D e e Disease		X X X	
ass colour			
0		3.1	6.2
	_		6.00 PM

Figure 7: Visualization of Old Peak Attribute

Weka Explorer: Visualizing Cardio Data Set	×
X: Class (Nom)	Y: Class (Nom)
Colour: Exercise_Induced_Angina (Nom)	Select Instance
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
N D I S e e a s e e D I S e e a s e e	
e #XX Mi ~ Disease	No Disease
Class colour	
No	Yes
📲 🔎 🌀 🛓 📙 Saravanan 📜 Adobe Read 🧭 Weka GUI C	🔗 Weka Explo 🔗 All attributes 🔗 Weka Explo 🔗 Weka Explo 💀 📰 🐦 🌾 🕼 🐿 📼 😚 10 PM 👘 1/10/2021

Figure 8: Visualization of Exercise_Induced_Angina Attribute

🥥 Weka Explorer: Visualizing Cardio Data Set	- a ×
X: Class (Nom)	Y: Class (Nom)
Colour: Max_Heart_Rate (Num)	Select Instance
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
D D D D D D D D D D D D D D D D D D D	No Disease
Class colour	
71	136.5 202
🕂 🔎 🌀 🛓 📙 Saravanan 😕 Adobe Read 🦪 Weka GUI C 🦪) Weka Explo 🧭 All attributes 🕢 Weka Explo 🕢 Weka Explo 😻 🔤 2 - Microsof 🥻 💭 💻 😚 (4) 🐿 📰 6:10 PM 1/10/2021 🖏

Figure 9: Visualization of Max_Heart Rate Attribute

Figure 10: Visualization of Rest_ECGAttribute

Weka Explorer: Visualizing Cardio Data Set	- 0 X
X: Class (Nom)	Y: Class (Nom)
Colour: Rest_ECG (Nom)	Select Instance
Reset Clear Open Save	Jitter O
Plot: Cardio Data Set	_
D to the second	
Disease	No Disease
Class colour	
Left Ventricular Hypertrophy Normal	ST-T Wave Abnormality
🕂 🔎 🌀 🛓 📙 Saravanan 📜 Adobe Read 🧭 Weka GUI C) Weka Explo 🧭 All attributes 🔗 Weka Explo 🔗 Weka Explo 😻 📲 💈 // (4)) 🐿 📼 6:11 PM 1/10/2021 🖣

Figure 11: Visualization of Fasting_ECGAttribute

Weka Explorer: Visualizing Cardio Data Set	– a ×
X: Class (Nom)	Y: Class (Nom)
Colour: Serum_Cholestoral (Num)	Select Instance
Reset Clear Open Save	Jitter
Plot: Cardio Data Set	
N D D S e a a s e	
e all a second a se	
pisease	No Disease
Class colour	
126	345 564
📲 🔎 🌍 🛓 📙 Saravanan 📜 Adobe Read 🔿 Weka GUI C 🥥) Weka Explo 🏈 All attributes 🛛 Weka Explo 🦪 Weka Explo 💘 2 - Microsof 🖒 💻 🔨 🌈 (4)) 🖭 🥅 (41) PM

Figure 12: Visualization of Serum_CholastralAttribute

Class (Nom)		Y: Class (Nom)		
olour: Resting_Blood_Pressure (Num)		Select Instance		
Reset Clear	Open Save		Jitter	
t: Cardio Data Set				
Disease			X X X	
24		147		2

Figure 13: Visualization of Resting_Blood Pressure Attribute

Weka Explorer: Visualizing Cardio Data Set			- 0 ×
X: Class (Nom)	•	Y: Class (Nom)	•
Colour: Chest_Pain_Type (Nom)	T	Select Instance	_
Reset Clear	Open Save	Jitter	0
Plot: Cardio Data Set			
D 1 3 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8		×××××××××××××××××××××××××××××××××××××××	
		No Disease	
Class colour			
Asymptomatic	Non Anginal Pain	Atypical Angina	
📫 🔎 🌍 🛓 📙 Saravanan	🟃 Adobe Read 🦪 Weka GUI C 🦪	Weka Explo 🧭 All attributes 🦪 Weka Explo 🧭 Weka Explo 📑 2	2 - Microsof 🌘 💻 🌾 🦚 🕬 🐿 📰 6:12 PM 1/10/2021 🖣

Figure 14: Visualization of Chest PainAttribute

🥥 Weka Explorer: Visualizing Cardio Data Set	– 0 X
X: Class (Nom)	Y: Class (Nom)
Colour: Sex (Nom)	Select Instance
Reset Clear Open Save	
	Jiller
Plot Cardio Data Set	No Disease
Male	Fenale
🕂 🔎 🎯 🛓 📕 Saravanan 📜 Adobe Read 🌏 Weka GUI C 🤕) Weka Explo 🌏 All attributes 🕜 Weka Explo 🕜 Weka Explo 🖬 2 - Microsof 🖒 💻 🔨 🌾 (4)) 🐿 📼 6-12 PM 🛐

Figure 15: Visualization of Sex Attribute

Weka Explorer: Visualizing Cardio Data Set		– 0 ×
X: Class (Nom)	Y: Class (Nom)	V
Colour: Sex (Nom)	Select Instance	T
Reset Clear Open	Save	Jitter
Plot: Cardio Data Set		
N O D i s e a s e e		
DISCOSE		No Disease
Class colour		
Male	Fen	ale
👯 🔎 🏮 🛓 📙 Saravanan 📙 Adobe Read 🦪	Weka GUI C 🦪 Weka Explo 🦪 All attrib	utes 🕜 Weka Explo 🕜 Weka Explo 🐖 2 - Microsof 🕨 💻 🔨 🎪 4% 💬 📾 612 PM 1/10/2021 😽

Figure 16: Visualization of Age Attribute

The diagrams shows that the data visualizations of all the attributes like there are 14 attributes lies on the disease and no disease classes.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 4269 - 4289 Received 25 April 2021; Accepted 08 May 2021.

kMeans

Number of iterations: 4 Within cluster sum of squared errors: 710.4670812208781

Initial starting points (random):

Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular Hypertrophy', 160, No, 3.6, Downsloping, 'Non Anginal Pain', Normal, 'No Disease' Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, 'Typical Angina', Normal, Disease

Missing values globally replaced with mean/mode

Final cluster centroids:

		Cluster	
Attribute	Full Data	0	1
	(270.0)	(115.0)	(155.0)
Age	54.4333	56.8348	52.6516
Sex	Male	Male	Male
Chest_Pain_Type	Asymptomatic	Asymptomatic	Non Anginal Pain
Resting_Blood_Pressure	131.3444	133.8783	129.4645
Serum_Cholestoral	249.6593	254.9913	245.7032
Fasting_Blood_Sugar	FALSE	FALSE	FALSE
Rest_ECG	Left Ventricular Hypertrophy	Left Ventricular Hypertrophy	Normal
Max_Heart_Rate	149.6778	136.9826	159.0968
Exercise_Induced_Angina	No	Yes	No
Oldpeak	1.05	1.6157	0.6303
Slope	Upsloping	Flat	Upsloping
CA	Typical Angina	Atypical Angina	Typical Angina
Thal	Normal	Reversible defect	Normal
Class	Disease	No Disease	Disease

Time taken to build model (full training data) : 0.01 seconds

Figure 17: K Means cluster No=2

kMeans

Number of iterations: 4 Within cluster sum of squared errors: 648.2251333482561

Initial starting points (random):

Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular Hypertrophy', 160, No, 3.6, Downsloping, 'Non Anginal Pain', Normal, 'No Disease' Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, J'8, No, 0, Upsloping, 'Typical Angina', Normal, Disease

Cluster 2: 60, Male, Asymptomatic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non Anginal Pain', 'Reversible defect ', 'No Disease'

Missing values globally replaced with mean/mode

Final cluster centroids:

		Cluster		
Attribute	Full Data	0	1	2
	(270.0)	(49.0)	(130.0)	(91.0)
Age	54.4333	59	51.4	56.3077
Sex	Male	Female	Male	Male
Chest_Pain_Type	Asymptomatic	Asymptomatic	Non Anginal Pain	Asymptomatic
Resting_Blood_Pressure	131.3444	134.6735	129.3308	132.4286
Serum_Cholestoral	249.6593	271.6735	240.4308	250.989
Fasting_Blood_Sugar	FALSE	FALSE	FALSE	FALSE
Rest_ECG	Left Ventricular Hypertrophy	Left Ventricular Hypertrophy	Normal	Left Ventricular Hypertrophy
Max_Heart_Rate	149.6778	145.4694	161.9308	134.4396
Exercise_Induced_Angina	No	No	No	Yes
Oldpeak	1.05	1.1816	0.5792	1.6516
Slope	Upsloping	Flat	Upsloping	Flat
CA	Typical Angina	Typical Angina	Typical Angina	Atypical Angina
Thal	Normal	Normal	Normal	Reversible defect
Class	Disease	No Disease	Disease	No Disease

Time taken to build model (full training data) : 0.01 seconds

Figure 18: K Means cluster=3

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 4269 - 4289 Received 25 April 2021; Accepted 08 May 2021.

kMeans					
Number of iterations: 8					
Within cluster sum of squa	red errors: 608.7121457525952				
Initial starting points (r	andom):				
Cluster 0: 62, Female, Asymp	tomatic, 140, 268, FALSE, 'Left Ventricular H	ypertrophy', 160, No, 3.6, Downs	loping,'Non Anginal Pain',No	rmal,'No Disease'	
Cluster 1: 42, Male, Asympto	matic, 140, 226, FALSE, Normal, 178, No, 0, Upslo	ping, 'Typical Angina', Normal	,Disease		
Cluster 2: 60, Male, Asympto	matic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Ups	loping,'Non Anginal Pain','R	eversible defect ','No Disea	se'	
Cluster 3: 64, Male, Asympto	matic, 128, 263, FALSE, Normal, 105, Yes, 0.2, F1	at, 'Atypical Angina', 'Revers	ible defect ',Disease		
Missing values globally re	placed with mean/mode				
Final cluster centroids:					
		Cluster			
Attribute	Full Data	0	1	2	
	(270.0)	(57.0)	(109.0)	(28.0)	(76.0)
Age	54.4333	58.5263	50.3303	56	56.6711
Say	Male	Female	Male	Male	Male
N'CA					
Chest_Pain_Type	Asymptomatic	Asymptomatic	Non Anginal Pain	Asymptomatic	Asymptomatic
Chest_Pain_Type Resting_Blood_Pressure	Asymptomatic 131.3444	Asymptomatic 134.0877	Non Anginal Pain 128.1193	Asymptomatic 132.0357	Asymptomatic 133.6579
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral	Asymptomatic 131.3444 249.6593	Asymptomatic 134.0877 263.193	Non Anginal Pain 128.1193 237.9817	Asymptomatic 132.0357 261.0714	Asymptomatic 133.6579 252.0526
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar	Asymptomatic 131.3444 249.6593 FALSE	Asymptomatic 134.0877 263.193 FALSE	Non Anginal Pain 128.1193 237.9817 FALSE	Asymptomatic 132.0357 261.0714 FALSE	Asymptomatic 133.657 252.0526 FALSE
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG	Asymptomatic 131,3444 249,6593 FALSE Left Ventricular Hypertrophy Left V	Asymptomatic 134.0877 263.193 FALSE entricular Hypertrophy	Non Anginal Pain 128.1193 237.9817 FALSE Normal Left	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left	Asymptomatic 133.657 252.0526 FALSE : Ventricular Hypertrophy
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max Heart Rate	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778	Asymptomatic 134.0877 263.193 FALSE entricular Hypertrophy 146.9123	Non Anginal Pain 128,1193 237,9817 FALSE Normal Left 162,9633	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8929	Asymptomatic 133.6575 252.0526 FALSE Ventricular Hypertrophy 130.4075
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina	Asymptomatic 131,3444 249,6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No	Asymptomatic 134.0877 263.193 FALSE entricular Hypertrophy 146.9123 No	Non Anginal Pain 128,1193 237,9817 FALSE Normal Left 162,9633 No	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8929 Yes	Asymptomatic 133.6579 252.0526 FALSB Ventricular Hypertrophy 130.4079 Yes
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina Oldpeak	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No 1.05	Asymptomatic 134.0877 263.193 FALSE entricular Hypertrophy 146.9123 No 1.0667	Non Anginal Pain 128.1193 237.9017 FALSE Normal Left 162.9633 No 0.511	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8929 Yes 0.7679	Asymptomatic 133.657 252.0524 FALSE Ventricular Hypertrophy 130.407 Yes 1,944
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina Oldpeak Slope	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No 1.05 Upsloping	Asymptomatic 134,0877 263,193 FRISE entricular Hypertrophy 146,9123 No 1.0667 Flat	Non Anginal Pain 128.1193 237.9017 FALSE Normal Left 162.9633 No 0.511 Upploping	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8829 Yes 0.7679 Upsloping	Asymptomatic 133.657 252.02 FALSE Ventricular Hypertrophy 130.407 Yes 1.9145 Flat
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina Oldpeak Slope CA	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No 1.05 Upsloping Typical Angina	Asymptomatic 134,0077 263.193 FALSE entricular Hypertrophy 146.9123 No 1.0667 Flat Typical Angina	Non Anginal Pain 128.1193 237.9017 FALSE Normal Left 162.9633 No 0.511 Upsloping Typical Angina	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8829 Yes 0.7679 Upsloping Non Anginal Pain	Asymptomatic 133.657 252.0524 FALSE Ventricular Hypertrophy 130.407 Yes 1.9145 Flat Atypical Angine
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina Oldpeak Slope CA Thal	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No 1.05 Upsloping Typical Angina Normal	Asymptomatic 134.0877 263.193 FRLSE entricular Hypertrophy 146.9123 No 1.0667 Flat Typical Angina Normal	Non Anginal Pain 128.1193 237.9817 FALSE Normal Left 162.9633 No 0.511 Upsloping Typical Angina Normal	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8929 Yes 0.7679 Upsloping Non Anginal Pain Reversible defect	Asymptromatic 133.657 252.052 FALSE Ventricular Bypertrophy 130.4075 Yes 1.9145 Flat Atypical Angine Reversible defect
Chest_Pain_Type Resting_Blood_Pressure Serum_Cholestoral Fasting_Blood_Sugar Rest_ECG Max_Heart_Rate Exercise_Induced_Angina Oldpeak Slope CA Thal Class	Asymptomatic 131.3444 249.6593 FALSE Left Ventricular Hypertrophy Left V 149.6778 No 1.05 Upsloping Typical Angina Normal Dimease	Asymptomatic 134.0877 263.193 FRLSE entricular Hypertrophy 146.9123 No 1.0667 Flat Typical Angina Normal Disease	Non Anginal Pain 128.1193 237.9817 FALSE Normal Left 162.9633 No 0.511 Upsloping Typical Angina Normal Disease	Asymptomatic 132.0357 261.0714 FALSE Ventricular Hypertrophy Left 155.8929 Yes 0.7679 Upsloping Non Anginal Pain Reversible defect No Disease	Asymptomatic 133.6579 252.052 Ventricular Hypertrophy 130.4079 Yes 1.9145 Flat Atypical Angina Reversible defect No Disease

igure 19: K Means cluster=4

ons: 5 m of squared errors: 581.9453678366942 points (random): ale, Asymptomatic, 140, 268, FALSE, 'Left Ventricular Hypertrophy', 160, No, 3.6, Downsloping, 'Non Anginal Fain', Normal, 'No Disease' e, Asymptomatic, 140, 226, FALSE, Hormal, 178, No, 0, Upsloping, 'Typical Angina', Normal, Disease e, Asymptomatic, 141, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non Anginal Fain', 'Reversible defect ', 'No Disease' e, Asymptomatic, 122, 263, FALSE, Normal, 105, Yes, 0.7, Fate, 'Atypical Angina', Yeversible defect ', Disease ale, Asymptomatic, 128, 303, FALSE, Normal, 105, Yes, 0.7, Fate, 'Atypical Angina', 'Reversible defect ', Disease' ale, Asymptomatic, 128, 303, FALSE, 'Left Ventricular Hypertrophy', 159, No, 0, Upsloping, 'Atypical Angina', Normal, Disease obally replaced with mean/mode troids: -----

	CIUDUCIA				
Full Data	0	1	2	3	4
(270.0)	(45.0)	(85.0)	(31.0)	(51.0)	(58.0)
54.4333	59.5778	47.8118	56.6129	55.2549	58.2586
Male	Male	Male	Male	Male	Female
Asymptomatic	Asymptomatic	Non Anginal Pain	Asymptomatic	Asymptomatic	Non Anginal Pain
ssure 131.3444	139.7556	125.7882	134.6774	129.3725	132.9138
. 249.6593	250.8444	231.1176	264.8387	246.3529	270.7069
ar FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
Left Ventricular Hypertrophy	Left Ventricular Hypertrophy	Normal	Left Ventricular Hypertrophy	Normal	Left Ventricular Hypertrophy
149.6778	142.4667	164.8235	145.7742	129.098	153.2586
Angina No	No	No	Yes	Yes	No
1.05	1.9333	0.4741	1.371	1.6431	0.5155
Upsloping	Flat	Upsloping	Upsloping	Flat	Upsloping
Typical Angina	Typical Angina	Typical Angina	Non Anginal Pain	Atypical Angina	Typical Angina
Normal	Normal	Normal	Reversible defect	Reversible defect	Normal
Disease	No Disease	Disease	No Disease	No Disease	Disease

Figure 20: K Means cluster=5

The above pictures shown that the K Means clusters of all attributes (14 attributes) in the heart disease dataset for implementing deductive learning process.

S.No	Number	Number of	Sum of Squared	Clustered Instances	Time Taken to
	of	Iterations	Errors		Build the
	Clusters		(Within cluster)		Model (In

Table 2: Metrics of K Means Clusters

							seconds	s)
	Α	B	Α	В	Α	В	Α	В
2	3	4	710.46	466.36	0-115(43%)	0-42 (46%)	0.01	0
					1-155(57%)	1-50 (54%)		
3	4	4	648.26	426.63	0-49(18%)	0-23(25%)	0.01	0
					1-130(48%)	1-46(50%)		
					2-91(34%)	2-23(25%)		
4	5	8	608.71	398.56	0-57(21%)	0-22(24%)	0.01	0.03
					1-109(40%)	1-12(13%)		
					2-28(10%)	2-24(26%)		
					3-76(28%)	3-34(37%)		
5	6	5	581.95	379.77	0-45(17%)	0-21(23%)	0.01	0
					1-85(31%)	1-13(14%)		
					2-31(11%)	2-18(20%)		
					3-51(19%)	3-30(33%)		
					4-58(21%)	4-10(11%)		
6	7	9	572.62	355.02	0-27(10%)	0 -15 (16%)	0.02	0.01
					1-83(31%)	1-17(18%)		
					2-40(15%)	2-14(15%)		
					3-55(20%)	3-20(22%)		
					4-17(6%)	4-12(13%)		
				1				
	2 3 4 5 6	A 2 3 3 4 4 5 5 6 6 7	A B 2 3 4 3 4 4 4 5 8 5 6 5 6 7 9	A B A 2 3 4 710.46 3 4 4 648.26 4 5 8 608.71 5 6 5 581.95 6 7 9 572.62	A B A B 2 3 4 710.46 466.36 3 4 4 648.26 426.63 4 5 8 608.71 398.56 5 6 5 581.95 379.77 6 7 9 572.62 355.02	A B A B A 2 3 4 710.46 466.36 0-115(43%) 3 4 4 648.26 426.63 0-49(18%) 3 4 4 648.26 426.63 0-49(18%) 1-130(48%) 2-91(34%) 1-130(48%) 2-91(34%) 4 5 8 608.71 398.56 0-57(21%) 1-109(40%) 2-28(10%) 3-76(28%) 1-109(40%) 2-28(10%) 5 6 5 581.95 379.77 0-45(17%) 1-85(31%) 2-31(11%) 3-51(19%) 4-58(21%) 6 7 9 572.62 355.02 0-27(10%) 1-83(31%) 2-40(15%) 3-55(20%) 4-17(6%) 4-17(6%)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

• Cluster Model (Full Training Set) =A

• Cluster Model(66% Split)=B

* Implementing Euclidean distance (or similarity) function.

The above table represents that the various measurements producing while implementing full training and 66% training set of the heart disease dataset.

The below table represents that the centroid clusters of K means clusters for full and 66% training set in Weka 3.8.3 tool.

Table 3: Centroid clusters of K Means Clusters for Full / 66% Training set

		Cluster Centroids / Clustering model (full training set)
S.No	Nu	Initial starting points (random)
	mbe	
	r of	
	Clus	
	ters	
1	2	Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular

		Hypertrophy',160,No,3.6,Downsloping,'Non AnginalPain',Normal,'No Disease'
		Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, 'Typical
		Angina',Normal,Disease
2	3	Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular
		Hypertrophy',160,No,3.6,Downsloping,'Non AnginalPain',Normal,'No Disease'
		Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, Typical
		Angina',Normal,Disease
		Cluster 2: 60, Male, Asymptomatic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non
		AnginalPain', 'Reversible defect ', 'No Disease'
3	4	Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular
		Hypertrophy',160,No,3.6,Downsloping,'Non AnginalPain',Normal,'No Disease'
		Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, Typical
		Angina',Normal,Disease
		Cluster 2: 60, Male, Asymptomatic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non
		AnginalPain','Reversible defect ','No Disease'
		Cluster 3: 64, Male, Asymptomatic, 128, 263, FALSE, Normal, 105, Yes, 0.2, Flat, 'Atypical
		Angina','Reversible defect ',Disease
4	5	Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular
		Hypertrophy',160,No,3.6,Downsloping,'Non AnginalPain',Normal,'No Disease'
		Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, Typical
		Angina',Normal,Disease
		Cluster 2: 60, Male, Asymptomatic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non
		AnginalPain', 'Reversible defect ', 'No Disease'
		Cluster 3: 64, Male, Asymptomatic, 128, 263, FALSE, Normal, 105, Yes, 0.2, Flat, 'Atypical
		Angina', 'Reversible defect ', Disease
		Cluster 4: 57, Female, Asymptomatic, 128, 303, FALSE, 'Left Ventricular
		Hypertrophy',159,No,0,Upsloping,'Atypical Angina',Normal,Disease
5	6	Cluster 0: 62, Female, Asymptomatic, 140, 268, FALSE, 'Left Ventricular
		Hypertrophy',160,No,3.6,Downsloping,'Non AnginalPain',Normal,'No Disease'
		Cluster 1: 42, Male, Asymptomatic, 140, 226, FALSE, Normal, 178, No, 0, Upsloping, Typical
		Angina',Normal,Disease
		Cluster 2: 60, Male, Asymptomatic, 117, 230, TRUE, Normal, 160, Yes, 1.4, Upsloping, 'Non
		AnginalPain','Reversible defect ','No Disease'
		Cluster 3: 64, Male, Asymptomatic, 128, 263, FALSE, Normal, 105, Yes, 0.2, Flat, 'Atypical
		Angina','Reversible defect ',Disease
		Cluster 4: 57, Female, Asymptomatic, 128, 303, FALSE, 'Left Ventricular
		Hypertrophy',159,No,0,Upsloping,'Atypical Angina',Normal,Disease

		Cluster 5: 50, Female, Asymptomatic, 110, 254, FALSE, 'Left Ventricular
		Hypertrophy',159,No,0,Upsloping,'Typical Angina',Normal,Disease
-		Cluster Centroids / Clustering model (66% Slit)
1	2	Cluster 0: 48 Mele 'Non Anginel Dein' 124 255 TDUE Normel 175 No.0 Unclosing 'Non
1	2	Anginal Dain' Normal Disease
		Augman Fain, Norman, Disease
		Angina' 'Bouarsible defeat ' 'No Disease'
	2	Angina, Reversible delect, NO Disease
2	3	Cluster 0: 48, Male, Non Anginal Pain, 124,255, 1 KUE, Normal, 175, No, 0, Upsioping, Non
		Anginai Pain, Normai, Disease
		Cluster 1: 58, Male, Typical Angina, 120, 251, FALSE, Normal, 182, Yes, 5.8, Flat, Typical
		Angina, Reversible defect, No Disease
		Cluster 2: 44, Male, Atypical Angina, 120, 263, FALSE, Normal, 173, No, 0, Upstoping, Typical
		Angina', Reversible defect ',Disease
3	4	Cluster 0: 48, Male, 'Non Anginal Pain', 124, 255, TRUE, Normal, 175, No, 0, Upsloping, 'Non
		Anginal Pain', Normal, Disease
		Cluster 1: 38, Male, "Typical Angina', 120, 231, FALSE, Normal, 182, Yes, 3.8, Flat, "Typical
		Angina', Reversible defect ', No Disease'
		Cluster 2: 44, Male, 'Atypical Angina', 120, 263, FALSE, Normal, 173, No, 0, Upsloping, 'Typical
		Angina', 'Reversible defect ', Disease
		Cluster 3: 61,Male,Asymptomatic,120,260,FALSE,Normal,140,Yes,3.6,Flat,'Atypical
		Angina','Reversible defect ','No Disease'
4	5	Cluster 0: 48,Male,'Non Anginal Pain',124,255,TRUE,Normal,175,No,0,Upsloping,'Non
		Anginal Pain',Normal,Disease
		Cluster 1: 38, Male, 'Typical Angina', 120, 231, FALSE, Normal, 182, Yes, 3.8, Flat, 'Typical
		Angina','Reversible defect ','No Disease'
		Cluster 2: 44, Male, 'Atypical Angina', 120, 263, FALSE, Normal, 173, No, 0, Upsloping, 'Typical
		Angina', 'Reversible defect ', Disease
		Cluster 3: 61,Male,Asymptomatic,120,260,FALSE,Normal,140,Yes,3.6,Flat,'Atypical
		Angina', 'Reversible defect ', 'No Disease'
		Cluster 4: 58, Male, Asymptomatic, 150, 270, FALSE, 'Left Ventricular
		Hypertrophy',111,Yes,0.8,Upsloping,'Typical Angina','Reversible defect ','No Disease'
5	6	Cluster 0: 48, Male, 'Non Anginal Pain', 124, 255, TRUE, Normal, 175, No, 0, Upsloping, 'Non
		Anginal Pain',Normal,Disease
		Cluster 1: 38, Male, 'Typical Angina', 120, 231, FALSE, Normal, 182, Yes, 3.8, Flat, 'Typical
		Angina','Reversible defect ','No Disease'

	Cluster 2: 44, Male, 'Atypical Angina', 120, 263, FALSE, Normal, 173, No, 0, Upsloping, 'Typical
	Angina','Reversible defect ',Disease
	Cluster 3: 61, Male, Asymptomatic, 120, 260, FALSE, Normal, 140, Yes, 3.6, Flat, 'Atypical
	Angina','Reversible defect ','No Disease'
	Cluster 4: 58, Male, Asymptomatic, 150, 270, FALSE, 'Left Ventricular
	Hypertrophy',111,Yes,0.8,Upsloping,'Typical Angina','Reversible defect ','No Disease'
	Cluster 5: 67, Male, Asymptomatic, 120, 237, FALSE, Normal, 71, No, 1, Flat, 'Typical
	Angina',Normal,'No Disease'

Figure 21: K Means cluster Vs Iterations

The above diagram clearly shows that number of cluster is 2, the model produces 3 iterations for full training set and 4 iterations for 66% training set, if the number of cluster is 3, the model produces 4 iterations for full training set and 66% training set, if the number of cluster is 4, the model produces 5 iterations for full training set and 8 iterations for 66% training set, If the number of cluster is 5, the model produces the 6 iterations for full training set and 5 iterations for 66% training set, If the number of cluster is 6, the model produces 7 iterations for full training set and 9 iterations for 66% training set.

Figure 22: K Means cluster Vs SSE

The above diagram clearly shows that number of cluster is 2, this model has 710.46 sum of squared errors for full training set and 466.36 sum of squared errors for 66% training set, if the number of cluster is 3, this model has 648.26 sum of squared errors for full training set and 426.63 sum of squared errors for 66% training set, if the number of cluster is 4, this model has 608.71 sum of squared errors for full training set and 398.56 sum of squared errors for 66% training set, if the number of cluster is 5, this model has 581.95 sum of squared errors for full training set and 379.77 sum of squared errors for 66% training set , if the number of cluster is 6 this model has 572.62 sum of squared errors for full training set.

Figure 23: K Means cluster VsTime(Seconds)

The above diagram clearly shows that number of cluster is 2, this model has taken the time to build the model is 0.01 seconds for full training set and zero second for 66% training set, if the number of cluster is 3, this model has taken the time to build the model is 0.01 seconds for full training set and zero second for 66% training set, if the number of cluster is 4, this model has taken the time to build the model is 0.03 seconds for 66% training set, if the number of cluster is 5, this model has taken the time to build the model is zero second for 66% training set and 0.01 seconds for 66% training set and 0.01 seconds for 66% training set and 0.01 seconds for 66% training set.

Figure 24: K Means cluster Vs Cluster Instances

The above diagram clearly shows that number of cluster is 2, this model has 43% & 57% of cluster instances for full training set and 46% & 54% of cluster instances for 66% training set, if the number of cluster is 3, this model has 18% 48% & 34% of cluster instances for full training set and 25%,50% & 25% of cluster instances for 66% training set, if the number of cluster is 4, this model has 21%,40%,10% & 28% of cluster instances for full training set and 24%,13%,26% and 37% of cluster instances for 66% training set, If the number of cluster is 5, this model has 17%,31%,11%,19% & 21% of cluster instances for full training set and 23%,14%,20%,33% &11% of cluster instances for 66% training set, If the number of cluster is 6, this model has 10%,31%,15%,20%,6% &18% of cluster instances for 66% training set and 16%,18%,15%,22%,13% &15% of cluster instances for 66% training set. Based on the time consumption the system recommends that cluster 2, 3 and 5 have zero second taken the time consumption for build the model in 66% training set. 0.01 seconds for cluster 6 and 0.03 seconds for cluster 4 in 66% training set models. Cluster 5 and 6 have low sum of squared errors for full training and 66% training set comparatively other models.

Conclusion

Finally this work concludes that when the proposed model has 6 clusters, it has more number of iteration to build the model like full training set has 7 iterations and 44% testing test has 9 iterations with 572.62 sum of squared error for full training set and 355.02 for 44% test set. It has taken the time to build the model 0.02 seconds for full training set and 0.01 second for 66% training set. This model produces the low sum of squared errors comparatively other models.

References

- G. Ayyappan ,K.Sivakumar, Heart Disease Data Set Classifications: Comparisons Of Correlation Co Efficient By Applying Various Parameters In Gaussian Processes, Indian Journal of Computer Science and Engineering (IJCSE), Vol. 9 No. 5 Oct-Nov 2018, Page Number130-134, e-ISSN : 0976-5166, p-ISSN : 2231-3850.
- [2] Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., &Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64,304--310.
- [3] David W. Aha & Dennis Kibler. "Instance-based prediction of heart-disease presence with the Cleveland database.
- [4] S. Mohan, C. Thirumalai, G. Srivastava, 2019. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. J. IEEE Access, vol. 7, pp. 81542-81554, 2019, doi: 10.1109/ACCESS.2019.2923707.
- [5] Chandna, Deepali, 2014. Diagnosis of Disease Using Data Mining Algorithm. Heart Computer Information Technologies, Vol. 5 (2), 2014, International Journal of Science and 1678-1680.
- [6] Rani, K., 2011. Analysis Of Heart Diseases Dataset Using Neural Network Approach. International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.1, No.5, September 2011

- [7] Karthiga, A. Sankari, M. Safish Mary, M. Yogasins, 2017. Early Prediction of Heart Disease Using Decision Tree Algorithm. International Journal of Advanced Research in Basic Engineering Sciences and Technology 3.3 (2017).
- [8] C. Sowmiya, P. Sumitra, 2017. Analytical study of heart disease diagnosis using classification techniques. IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, 2017, pp. 1-5, doi: 10.1109/ITCOSP.2017.8303115.
- [9] Bahadur, Shamsher, 2013. Predict the Diagnosis of Heart Disease Patients Using Classification Mining Techniques. IOSR Journal of Agriculture and Veterinary Science. 4. 60-64. 10.9790/2380-0426164.
- [10] G. Ayyappan ,K.Sivakumar, Heart Disease Data Set Classifications: Comparisons Of Correlation Co Efficient By Applying Various Parameters In Gaussian Processes, Indian Journal of Computer Science and Engineering (IJCSE), Vol. 9 No. 5 Oct-Nov 2018, Page Number135-140, e-ISSN : 0976-5166, p-ISSN : 2231-3850.
- [11] Gennari, J.H., Langley, P, & Fisher, D. (1989). Models of incremental concept formation. Artificial Intelligence, 40, 11--61.
- [12] <u>https://www.kaggle.com/mruanova/predict-heart-disease-using-random-forests#Random-Forest-Classifier</u>
- [13] <u>https://www.kaggle.com/nyjoey/heart-disease</u>
- [14] <u>https://towardsdatascience.com/exploratory-data-analysis-on-heart-disease-uci-data-set-ae129e47b323</u>
- [15] C. Sowmiya, P. Sumitra, 2017. Analytical study of heart disease diagnosis using classification IEEE International techniques. Conference on Intelligent Techniques in Control, and (INCOS), Srivilliputhur, 2017, pp. 1-5, doi: Optimization Signal Processing 10.1109/ITCOSP.2017.8303115.
- [16] Parthiban, G., Srivatsa, Shesh, 2012. Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients. International Journal of Applied Information Systems. 3. 25-30. 10.5120/ijais12-450593.
- [17] Cömert, Z., A. F. Kocamaz, 2017. Comparison of machine learning techniques for fetal heart rate classification. Acta Phys. Pol. A 132.3 (2017): 451-454.
- [18] Patel, Jaymin, Tejalupadhyay, Samir, Patel, Samir, 2016. Heart Disease Prediction using Machine learning and Data Mining Technique. International Journal of Computing Science and Communication10.090592/IJCSC.2016.018.
- [19] S. Pouriyeh, S. Vahid, G. Sannino, G. De Pietro, H. Arabnia, J. Gutierrez, 2017. A comprehensive investigation and comparison of Machine Learning Techniques in the domain of heart disease. IEEE Symposium on Computers and Communications (ISCC), Heraklion, 2017, pp. 204-207, doi: 10.1109/ISCC.2017.8024530.