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ABSTRACT  

         In this paper we proposed a mathematical model for analyzing the dynamics of controlling smoking 

activity under the influence of educational awareness programmers, as well as the determination of individuals 

to stop smoking. The model exhibits two equilibrium points which are named as smoking free equilibrium and 

endemic equilibrium. These equilibrium points of the model are analyzed through stability analysis both 

analytically and numerically. Further, the model is enhanced by introducing stochasticity and analyzed the 

effect of stochastic model by comparing it with deterministic model. Numerical simulation of both the 

deterministic and stochastic model is exhibited to validate our analytical findings. Our result shows the better 

ways for eradicate smoking habit through the parameter effects of the model. 
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1. Introduction  
 

Tuberculosis (TB) is one of the most common causes of death in early modern societies and 

may also be the captain of these men of death (as alluded to in 1680 by Bunyan). It is also 

the second common purpose of the planet to die after HIV / AIDS. Around one-third of the 

world population is infected with My co bacterium tuberculosis (Mtb), the Tuberculosis 

(TB) bacteria. Generally, with a ready immune system, the bacteria are made inactive. In 

2003, 8.8 million people developed active tuberculosis, a rise in incidence of about 1% per 

annul [1], while 9.6 million people contracted the disease in 2006. 

“Noncommunicable diseases (NCDs), such as cancer, heart diseases and vascular 

diseases etc., have probably extreme socioeconomic results and major hurdle in Economic 

and social improvement of a country. Almost six million humans die from tobacco use 

annually, every from direct tobacco use and second-hand smoke. NCDs additionally kill at 

a younger age in low- and middle-income countries, wherever 29% of NCD deaths occur 

among people below the age of 60 (for complete detail refer to WHO report, 2010 [2]). 

The paper concludes tobacco smoking, latent smoking, and biomass indoor air 

pollution have been implicated as dangerous factors for infection, illness, and death from 

tuberculosis (TB). Tobacco smoking and air pollution indoors are persistent or exposures 

grow in areas where TB presents a serious health risk [3]. 

This paper proposes and analyze mathematical models to consider the dynamics of 

smoking behavior under the influence of educational programs and also individual’s 

determination to stop smoking. We establish the positivity and boundedness of the 

solutions in a biologically feasible region. A threshold value responsible for persistence of 

smoking is obtained and stability analysis on models is performed. We find that de- 

termination alone isn’t sufficient to kill smoking however it can diminish the prevalence of 

smoker population [4]. 

          In this paper tobacco use by teens and young adults remains shockingly high in the 

United States. Today, more than 3.6 million middle and high school students smoke 

cigarettes. In fact, for every person who dies due to smoking—more than 1,200 each day—at 
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least two youth or young adults become regular smokers. Nearly 90% of these replacement 

smokers try their first cigarette by age 18. Clearly, we have not solved the problem [5]. 

Due to epidemic aspect of smoking, a lot of researchers concentrate on understanding the 

dynamics of smoking through mathematical models [[6], [7], [8], [9], [10], [11]].Policymakers 

play a very important role in having the insight into mathematical models. There are very few 

research papers published related to smoking dynamics, to the best of our knowledge. In order 

to predict the smoking behavior dynamics, most of the models Consider compartment modeling 

method used in infectious disease modelling. 

As per WHO’s tobacco-free initiative [[12]] the chance of successful quitting rises in 

presence of smoking cessation measures. In epidemiological models the impact of behavior 

influencing factors such as educational initiatives, awareness programmes and other social 

initiatives play an important role in controlling the disease transmission in population and 

have been a topic of interest in last decade [[13], [14], [15], [16]]. 

In 2000 Garsow et al. presented a general epidemiological model in the sense of drug 

use. They identified the dynamics of increasing drug and tobacco use trends [7]. The proposed 

model was based on substance addiction and also quantified such social factors, such as peer 

pressure, relapse, therapy and counseling, and examined the complexities of substance use, 

especially tobacco use.  Brauer and Chavez referred to this work as a project problem in the 

book [17]. The entire population in this work is divided into three compartments: potential 

smokers, smokers and smokers who permanently quit. 

The power of educational programmes, as well as the willingness of individuals to stop 

smoking. We first suggest a compartmental model in which the entire population is divided 

into four classes: potential smokers (those who don’t smoke yet but may start smoking), 

smokers, education or counseling and quitters (those who quit smoking and never smoke 

again). An individual’s actions towards using some hazardous product will change if he 

knows about the fatality caused by that product. This is also valid in the case of the use of 

tobacco. Therefore, we believe that people in smoker class are stopping smoking because of 

information and awareness about the fatality caused by smoking. 

Using the concept of ordinary differential equation, we analyse our model and re- port 

detailed results of numerical simulations to support the analytical findings. First, our model is 

expanded to the concept of stochastic differential equations. We also com- pare the results of 

deterministic models with stochastic models. The remaining of this article is structured as 

follows:  Section 2 explains the equilibrium model and existence and demonstrates local 

stability, Global stability of equilibria. The stochastic model is discussed in Section 3. 

Section 4 presents the results of simulation for both deterministic and stochastic models. 

Finally, our results are summarized as a conclusion in Section 5.” 

 

2. The Model and Analysis 

     “We assume that total population (N) is constant for all time t. We dividing the population into four 

different compartments: Potential smoker class (P), smoker class(S), Education/Counseling class (E) and 

Quitters class (Q).  Potential smokers are those people who are inclined to smoking; Smokers   are the ones 

who are effectively smoking and Quitters are ones who have stopped smoking. The total population N = 

P+S+E+Q. Let  𝜇 be inflow rate of recruitment and mortality. It also represents natural death rate in 

each compartment. Let 𝛽 be rate of transmission of smoking habit, so that 𝛽
𝑃𝑆

𝑁
 represent the 

smoking incidence rate. 

A fraction 𝛾(1 − 𝜌1)𝑆 of these quitters will return to potential smoker class because of low 

assurance level and remaining 𝛾𝜌1𝑆 will continue to quitter’s class. 𝜌1 (0 ≤  𝜌1 ≤ 1) is the 



Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 2571-2587 
Received 25 April 2021; Accepted 08 May 2021. 
 

http://annalsofrscb.ro         2573 
 

measure of determination. It may be noted that if quitter’s determination is 100%, at that point 

every one of the individuals who quit will move to Q.” 

 

In view of the above considerations the mathematical model is proposed as follows: 

                           Table 1:  Description of parameters 

Parameter Description 

α Rate of potential smokers become smokers themselves 

β Rate of transmission of smoking habit 

γ Rate of education awareness in smoker class 

δ Rate of education awareness 

ε Rate of getting intention towards smoking 

ψ Rate of quitters after getting education awareness 

μ Rate of recruitment and mortality 

ρ1 Fraction of smokers going for education awareness 

ρ2 Fraction of smokers going for education awareness 

γρ1S Smokers entering for education awareness 

γ(1 − ρ1)S Smokers entering to quitters class 

δ(1 − ρ2)P Smokers entering to quitters class 

 

 
dP

dt
= μN − 

βPS

N
−  αP +  εQ − μP −  δP, 

 
dS

dt
=
βPS

N
−  μS + αP −  γS, 

 
dE

dt
=  γρ1S +  δρ2P −  μE − ψE, 

 
dQ

dt
=  δ(1 − ρ2)P +  γ(1 − ρ1)S −  εQ + ψE −  μQ. 

where 

k1 = α + μ + δ 

k2 = μ + γ 

k3 = μ + ψ 

The parameters used in the model 2 are described in Table. 1 
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Figure 1: Transfer Diagram of the Model 

 

1.1 Existence of Equilibria 

P(0) ≥ 0, S(0) ≥ 0, E(0) ≥ 0 and Q(0) ≥ 0 as initial conditions. As N is constant, we use 

following transformation 

p =
P

N
,  s =

S

N
 ,  e =

E

N
 , q =

Q

N
  we get: 

 

 

 
dp

dt
= μ − βps −  αp +  εq − μp −  δp, 

 
ds

dt
= βps −  μs + αp −  γs, 

                                                                               (1) 
de

dt
=  γρ1s +  δρ2p −  μe − ψe, 

 
dq

dt
=  δ(1 − ρ

2
)p +  γ(1 − ρ

1
)s −  εq + ψe −  μq 

 
  

P(0) ≥ 0, S(0) ≥ 0, E(0) ≥ 0 and Q(0) ≥ 0 as initial conditions Note that  

p + s + e + q = 1. 

The equilibria for our model are determined by setting right hand side of the model to zero. The system 

(1) has following two steady states 
 

(1) Smoking-free steady state, 
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E0 = (p0, s0, e0, q0) = (
−με + μ

ε + k1
, 0, 0,

−μ

ε
) 

(2) Smoking-persistent steady state, 

𝐸∗ = (𝑝∗, 𝑠∗, 𝑒∗, 𝑞∗) 
Where 

 

p∗ = 
k2s

α + βs
 

 

e∗ = 
γρ1s(α + βs) + δρ2(k2s)

k3(α + βs)
 

                                                                                                              (2)     

q∗ = 
k2s(k1 + βs) − μ(α + βs)

ε(α + βs)
 

Where 
 

k1 = α + μ + δ 

𝑘2 = μ + γ 

𝑘3 = μ + ψ 

 

 

R0 = 
βp

μ+α
 is the basis reproduction number of system (1) 

a non-smoking steady state 𝐸0 occurs at all times, but only 𝑅0 ≥ 1 has a smoking – 

persistent steady state 𝐸∗. 
We use the next generation matrix method to measure the basic reproduction number. We 

get two non-negative matrices F and V evaluated at 𝐸0 using this approach. such that, 

 

F =  (
βp 0
0 0

) and   V = (
μ + γ 0
−γρ1 μ + ψ

) 

[18]  is a good resource for identifying and evaluating matrices F and V.  The spectral radius 
of 𝐹𝑉−1, which corresponds to the basic reproduction number, is now 

 

R0 = 
βp

μ + γ
 

 

Since p, s, e, and q represent a proportion of the population, they must be positive. 

We note that: 
dp

dt
|P=0 = μ +  εq ≥ 0 ,     

ds

dt
|s=0 = αp ≥ 0    

 
de

dt
|e=0 = γρ1s + δρ2p ≥ 0 ,     

dq

dt
|q=0 = δ(1 − ρ2)p + γ(1 − ρ1)s + ψe ≥ 0.    
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As a result, the solution of the system (1) that starts in the positive octant will stay there 

indefinitely, ensuring the positivity of p, s, e, and q. As a result, the positively invariant set 

for the model system (1) is: 

 

Ω = {(p, s, e, q) ∈ ℝ+ 
3 |0 ≤ p + s + e + q ≤ 1, p ≥ 0, s ≥ 0, e ≥ 0, q ≥ 0} 

 

1.2 Stability Analysis 
 

“Theorem 2.1. (i) Smoking-free steady E0 is locally asymptotically stable for R0 < 1.  
 

(ii) Smoking-persistent steady state E∗ , whenever it exists is locally asymptotically 
stable. 

 
Proof : The Variational matrix for the system (1) is given by 
 

J =

(

 
 

−(βs + k1) −βp 0 ε
βs + α βp − k2 0 0
δρ2 γρ1 k3 0

δ(1 − ρ2) γ(1 − ρ1) ψ −(ε + μ)
    )

 
 

 

Stability analysis of Smoking-free point 

The Variational matrix, 𝑀∗ corresponding to the Endemic Equilibrium point  𝐸0 is given 

by 

M∗ =

(

 
 

n11 n12 0 n14
n21 n22 0 0
n31 n32 n33 0
n41 n42 n43 n44
    )

 
 

 

Where  

n11 = −k1,  n12 = −βp,         n14 = ε 

n21 = α,      n21 = βp − k2 

n31 = δρ2,   n32 =  γρ1,      n33 = −k3     

n41 = δ(1 − ρ2),     n42 = γ(1 − ρ1),    n43 = ψ,   n44 = −(ε + μ) 

 

The bi-quadratic equation 

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 

 

Where 
a1 = −(n11 + n22 + n33 + n44) 
a2 = n11n22 + n22n33 + n33n44 + n11n33 + n11n44 + n22n44 − n12n21 − n14n41  
a3 = n14n21n42 + n14n41n22 − n14n31n44 − n11n22n33 − n11n22n44 − n11n33n44 
           −n22n33n44 + n12n21n33 + n12n21n44 
a4 = n11n22n33n44 − n12n21n33n44 + n14n22n31n43 − n14n21n32n43 − n14n22n33n41  

+n14n21n33n42 

By using Routh-Hurwitz criteria, 𝐸0 will be locally asymptotically stable if the following 
conditions are satisfied: 𝑎1 > 0, 𝑎3 > 0,   𝑎1𝑎2𝑎3 − 𝑎3

2 − 𝑎1
2𝑎4 > 0, 𝑎3 > 0 
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𝐸0is locally asymptotically stable whenever 𝑅0 <  1 

 

Stability analysis of EE point 

The Variational matrix,  𝑀∗  corresponding to the Endemic Equilibrium point 𝐸∗ is given by 

 

M∗ =

(

 
 

n11 n12 0 n14
n21 n22 0 0
n31 n32 n33 0
n41 n42 n43 n44
    )

 
 

 

where 

n11 = −(βs + k1),   n12 = −βp,   n14 = ε 

n21 = βs + α,           n21 = βp − k2 

n31 = δρ2,    n32 =  γρ1,      n33 = −k3     

n41 = δ(1 − ρ2),     n42 = γ(1 − ρ1),    n43 = ψ,   n44 = −(ε + μ) 

The bi-quadratic equation 

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 

Where  

a1 = −(n11 + n22 + n33 + n44) 
a2 = n11n22 + n22n33 + n33n44 + n11n33 + n11n44 + n22n44 − n12n21 − n14n41  
a3 = n14n21n42 + n14n41n22 − n14n31n44 − n11n22n33 − n11n22n44 − n11n33n44 
           −n22n33n44 + n12n21n33 + n12n21n44 
a4 = n11n22n33n44 − n12n21n33n44 + n14n22n31n43 − n14n21n32n43 − n14n22n33n41 

+n14n21n33n42 
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By using Routh-Hurwitz criteria, 𝐸∗  will  be locally asymptotically stable if the 

following conditions are satisfied: 𝑏1 > 0, 𝑏3 > 0,   𝑏1𝑏2𝑏3 − 𝑏3
2 − 𝑏1

2𝑏4 > 0, 
𝑏3 > 0 3 1 

𝐸∗ is locally asymptotically stable whenever 𝑅0 > 1. 

Theorem 2.2. (i) Smoking-free steady state E0 is globally asymptotically stable for 

R0 ≤ 1 in feasible region Ω. 

(ii) Smoking-persistent steady state E∗,  whenever it exists, is globally asymptotically 

stable in feasible region Ω 

        Proof. (i) consider Lyapunov function as: 

V(p, s, e, q) =
1

2
((p − p0) + s + e + (q − q0))

2
+ s 

The derivative of V along solutions of system (1) is given by 

V̇(p, s, e, q) = ((p − p0) + s + e + (q − q0))(ṗ + ṡ + ė + q̇) + s 

= (βp − (μ + γ))s 

≤ −(μ + γ) (1 −
βp

μ + γ
) s 

≤ −(μ + γ)(1 − R0)s 

If 𝑅0 ≤ 1, �̇� ≤ 0 We infer that 𝐸0 is globally asymptotically stable for 𝑅0 ≤ 1 using 

the Lyapunov LaSalle theorem [19]. 
 

In part (ii), we consider the Lyapunov function to determine the global stability of 𝐸∗. 
 

V(p, s, e, q) =
1

2
((p − p∗) + (s − s∗) + (e − e∗) + (q − q∗))

2
+
1

2
(p − p∗)2 

 

+
k1 + ε

β
(s − s∗ − s∗ log

s

s∗
) 

 

This is a  Ω positive definite function, and its derivative along the solutions of 

system (1) is: 

 

V̇(p, s, e, q) = ((p − p∗) + (s − s∗) + (e − e∗) + (q − q∗))(ṗ + ṡ + ė + q̇) 
 

+(p− p∗)ṗ+
k1 + ε

β
(s − s∗)

s∗

s
  

 = +(p− p∗)(μ− βps+ εq− k1p) +
k1 + ε

β
(s − s∗)(βp − k2) 
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 = (−βs− k1)(p− p∗)2 + (p − p∗)(s − s∗)(βp∗ − k2) 
 

 = −(βs + k1)(p− p∗)2 
 

 

 
Clearly, V̇ ≤ 0  if R0 > 1. We infer that E∗ is globally asymptotically stable whenever  

R0 > 1 using the Lyapunov-LaSalle theorem.”" 
 

 

 

3. Stochastic model 

     “Here we expand our deterministic model to stochastic systems, as stochastic models 

are more capable of capturing random variations of the problem’s biological dynam- 

ics. The derivation of an SDE model is based on the method developed by Yuan et 

al. [20]. Let 𝑌(t) = (Y1(t), Y2(t), Y3(t), Y4(t))
T be a continuous random variable 

for    (p(t), s(t), e(t), q(t))T and T denotes the transpose of a matrix. 

 

  Let ΔX = Y(t + Δt) − Y(t) = (ΔY1, ΔY2, ΔY3, ΔY4)
T denotes the random vector 

for the change in random variables during time interval Δ𝑡. Here, we’ll write 

transition maps that define all possible changes in the SDE model between states. 

Based on our ODE model system (1), here we see that with in a small-time interval 

Δ𝑡, there are 9 possible changes between states. State changes and their probabilities 

are discussed in Table 2. In the case, the state change ∆Y is denoted by ∆Y = (-

1,1,0,0); The probability of this change is determined by 

 

Prob (Δ𝑌1, Δ𝑌2, Δ𝑌3, Δ𝑌4) = (−1,1,0,0)|(𝑌1, 𝑌2, 𝑌3, 𝑌4) 

= P2 = βY1Y2 + o(Δt) 
 

by neglecting terms higher than 𝑜(Δ𝑡), the following expectation change 𝐸(Δ𝑌) 
and its covariance matrix 𝑉(Δ𝑌) associated with Δ𝑌, can be identified. 

The expectation of Δ𝑌 is” 

 

 

 

𝐸(Δ𝑌) =∑𝑃𝑖(Δ𝑦)𝑖Δ𝑡 = (

𝜇 − 𝛽𝑌1𝑌2 + 휀𝑌4 − 𝛼𝑌1 − 𝜇𝑌1 − 𝛿𝑌1
𝛽𝑌1𝑌2 + 𝛼𝑌1 − 𝜇𝑌2 − 𝛾𝑌2
𝛾𝜌1𝑌2 + 𝛿𝜌2𝑌1 − 𝜇𝑌3 − 𝜓𝑌3 

𝛿(1 − 𝜌2)𝑌1 + 𝛾(1 − 𝜌1)𝑌2 − 휀𝑌4 + 𝜓𝑌3 − 𝜇𝑌4

)

14

𝑖=1

 Δ𝑡 
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= 𝑓(𝑌1, 𝑌2, 𝑌3, 𝑌4)Δ𝑡. 
 

 

 

     Table: 2 Possible changes of states and their probabilities 

 

Possible stage change                                Probability of state changes 
 

(Δ𝑦)1 = (1,0,0,0)
𝑇                                   𝑃1 = 𝜇Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)2 = (−1,1,0,0)
𝑇                                𝑃2 = 𝛽𝑌1𝑌2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)3 = (1,0,0,−1)
𝑇                               𝑃3 = 휀𝑌4Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)4 = (−1,1,0,0)
𝑇                                𝑃4 = 𝛼𝑌1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)5 = (−1,0,0,0)
𝑇                                𝑃5 = 𝜇𝑌1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)6 = (−1,0,0,1)
𝑇                                𝑃6 = 𝛿𝑌1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)7 = (0,−1,0,0)
𝑇                               𝑃7 = 𝜇𝑌2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)8 = (0,−1,0,1)
𝑇                               𝑃8 = 𝛾𝑌2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)9 = (0,0,1, −1)
𝑇                               𝑃9 = 𝛾𝜌1𝑌2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)10 = (0,0,1, −1)
𝑇                             𝑃10 = 𝛿𝜌2𝑌1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)11 = (0,0, −1,0)
𝑇                             𝑃11 = 𝜇𝑌3Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)12 = (0,0, −1,1)
𝑇                             𝑃12 = 𝜓𝑌3Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)13 = (0,0,0, −1)
𝑇                             𝑃13 = 𝜇𝑌4Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑦)14 = (0,0,0,0)
𝑇                                𝑃14  = (1 − ∑ 𝑃𝑖)

13
𝑖=1 + 𝑜(Δ𝑡) 

 

 

 

It should be noted that the expectation vector as well as the function f have the 

same form as in the ODE method (1). 

       Since the covariance matrix 𝑉(Δ𝑌) = 𝐸((Δ𝑌)(Δ𝑌)𝑇) − 𝐸(Δ𝑌)((Δ𝑌)𝑇) 
and  

𝐸((Δ𝑌)(Δ)𝑇) = 𝑓(𝑌)(𝑓(𝑌)𝑇)Δ𝑡, it can be approximated with diffusion matrix 

Ω times Δ𝑡 by neglecting the term of (Δ𝑡)2  such that V(ΔY) ≈ E((ΔY)(ΔY)T). 

That is, 
 

E ((ΔY)(ΔY)T) =∑Pi(ΔY)i(ΔY)i
TΔt =

13

i=1

 (

V11 V12 0 V14
V21 V22 0 V24
0 0 V33 V34
V41 V42 V43 V44

) . Δt = Ω 

 

where each component of the 4 × 4 diffusion matrix is symmetric, positive-

definite, and can be obtained by 

 

V11 = P1 + P2 + P3 + P4 + P5 + P6 = μ + βY1Y2 + εY4 + αY1 + μY1 + δY1 
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V22 = P2 + P4 + P7 + P8 = βY1Y2 + αY1 + μY2 + γY2  

V33 = P9 + P10 + P11 + P12 = γρ1Y2 + δρ2Y1 + μY3 + ψY3 

V44 = P3 + P6 + P8 + P9 + P10 = δ(1 − ρ2)Y1 + γ(1 − ρ1)Y2 + εY4 + ψY3 + μY4 

V12 = V21 = −P2 = −βY1Y2 

V14 = V41 = −P3 = −εY4 

V12 = V21 = −P4 = −αY1 

V14 = V41 = −P6 = −δY1 

V24 = V42 = −P8 = γY2 

V34 = V43 = −P9 = −γρ1Y2 

V34 = V43 = −P10 = −δρ2Y1 

V34 = V43 = −P12 = −ψY3 
 

 

 

    A matrix D square root of the symmetric, positive-definite diffusion matrix Ω such 

that K = Ω
1
2⁄   . Use an equivalent matrix K, such that 𝛺 = 𝐾𝐾𝑇 , where K has the 

dimension of a 4 × 8 matrix. 
 

 

K = 

(

 
 

M11 M12 M13 0 0 0 0 0
0 M22 0 M24 M25 0 0 0
0 0 0 0 0 M36 M37 0
0 0 M43 0 M45 M46 0 M48
          )

 
 

 

 

 

M11 = √P1 + P5 ,   M12 = −√P2 + P4  ,   M13 = √P3 + P6  

M22 = √P2 + P4  ,    M24 = −√P7 ,    M25 = −√P8  

M36 = √P9 + P10 + P12 ,      M37 = −√P11  

M43 = √P3 + P6 ,     M45 = √P8  ,     M46 = √P9 + P10 + P12 ,  M48 = −√P12  
 

Then, the Ito stochastic differential model has the following form: 

d(Y(t)) = f(Y1, Y2, Y3, Y4)dt + K. dw(t) 

with initial condition 𝑌(0) = (𝑌1(0), 𝑌2(0), 𝑌3(0), 𝑌4(0))
𝑇
 and a Wiener process, 

W(t) = (W1(t),W2(t),W3(t),W4(t),W5(t),W6(t),W7(t),W8(t))
T
   We get the 

stochastic differential equation model as follows: 

dp = [μ − βps − αp + εq − μp − δp]dt + √μ + μp dW1 −√βps + αp  dW2 
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+√εq + δp dW3 

ds = [βps −  μs + αp −  γs]dt + √βps + αp dW2 −√μs dW4 −√γs dW5 

de = [γρ1s +  δρ2p −  μe − ψe]dt + √γρ1s +  δρ2p + ψe dW6 −√μe dW7 

dq = [δ(1 − ρ2)p +  γ(1 − ρ1)s −  εq + ψe −  μq]dt + √εq + δp dW3
+√γs dW5 

+√γρ1s + δρ2p + ψe dW6 −√μq dW8              ------------------     (3)  
 

 

 

                                                  4. Numerical simulation 

   “Here, we simulate both deterministic and stochastic models for the following set 

of parameters: 

      𝛼 = 0.4,  𝛽 = 0.0093,  𝜇 = 0.167, 𝛾 = 0.5,  𝛿 = 0.2,  𝜓 = 0.2,  휀 = 0.6, 

𝜌1 = 0.2,  𝜌2 = 0.03  

    The system (1) is simulated for various set of parameters satisfying the condition 

of local and globally asymptotic stability of equilibrium 𝐸∗.  The simulation results for 

both deterministic and stochastic models are shown in Fig 2.  The stochastic model 

(SDE model) is simulated by Euler–Maruyama method, and mean of the 100 runs is 

plotted in Fig 2. Here, the results of stochastic model seem better than the 

deterministic model as the curve corresponding to Smoking lies below the one that 

corresponds to the deterministic model.” 

       𝛼 = 0.2,  𝛽 = 0.009,  𝜇 = 0.167,   𝛾 = 0.4,  𝛿 = 0.5, 𝜌1 = 0.7 ,  𝜌2 = 0.7,  

𝜓 = 0.5,  휀 = 0.2, 𝑝 = 0.9,  𝑠 = 0.9,  𝑞 = 0.3,  𝑒 = 0.5  
 

The system (1) is simulated for different set of parameters satisfying the condition of local and 

globally asymptotic stability of equilibrium𝐸∗ (see Fig.3 ). 

Figs 4 - 7 demonstrate the impact of various parameters on the equilibrium level 

of Smokers and quitters. 
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Figure 2: Variation of all compartments of the model showing the effect of Stochastic 

and deterministic 

 

 

 

Figure 3: Variation of all compartments of the model showing the stability 

 

 



Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 2571-2587 
Received 25 April 2021; Accepted 08 May 2021. 
 

http://annalsofrscb.ro         2584 
 

 

Figure 4: Effect of 𝛼 on the variation of all compartments of the model 

 

 

 

 

 

 
Figure 5: Effect of β on the variation of all compartments of the model 
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        Figure 6: Effect of 𝛿 on the variation of all compartments of the model 

 

 

 

 

 

 
      Figure 7: Effect of 𝛾 on the variation of all compartments of the model 
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5. Result Discussion and Conclusion 

In this paper, a deterministic mathematical model of smoking behavior in a 

population was proposed and analyzed. We calculate the equilibrium of the proposed 

model and analyses in detail the local stability and global stability of endemic 

equilibria. In addition, we expanded the proposed deterministic model to a stochastic 

model and compared the effects of its simulation with deterministic model. The 

stochastic model results showed that (2) eradicates smoking in comparison to the 

deterministic model. 

We assumed that smokers would quit if they are willing to do so. Relapse is less 

likely when you have a higher level of resolve. It also considers how potential 

smoking will be influenced by education. If people are taught about the risks of 

smoking-related illnesses, they will avoid smoking in the future and thereby fall into 

the removed class. We remember that the basic reproduction number 𝑅0 = 𝛽𝑝 𝜇 + 𝛾⁄   

and we need to bring down 𝑅0 below one in order to eradicate smoking. This can be 

done by growing educational opportunities and, as a result, education programs. 

As the value of 𝛼  (Rate of potential smokers become smokers themselves) 

increases in all compartments at the time stable point, the value differs (see Fig. 4 

). Fig. 5 depicts if  𝛽 value (Rate of transmission of smoking habit) increase or 

decrease there is no major different in all compartment. Fig. 6,7 depicts the 

parameter 𝛿, 𝛾 (Rate of education awareness,) value increasing time the education is 

increased and the quitters is decreased. 
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