
Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 5, 2021, Pages. 2064 - 2076 

Received 15 April 2021; Accepted 05 May 2021.  
 
 

2064 http://annalsofrscb.ro 

Computational Analysis of Developing Laminar Flow in a Pipe 
 

A. Naveenraj
1
, M. Karthe

2
, R.M. SooryaKumar

3
, S. Sivaprasath

4
, M. Vignesh

5
 

1
Assistant Professor, Department of Mechanical Engineering, M.Kumarasamy College of Engineering, Karur, Tamil 

Nadu, India. E-mail: rajnaveenraj5@gmail.com 
2
Assistant Professor, Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamil 

Nadu, India. E-mail: Karthembe@gmail.com 
3
UG Scholar, Department of Mechanical Engineering, M.Kumarasamy College of Engineering, Karur, Tamil Nadu, 

India. E-mail: soorya.tn.ind@gmail.com 
4
UG Scholar, Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, 

India. E-mail: sivaprasaths195@gmail.com 
5
UG Scholar, Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, 

India. E-mail: vicky26072000@gmail.com 

 

ABSTRACT 

A robust computational study is proposed for calculating the velocity and pressure distribution of steady, 

incompressible and developing laminar flow in a pipe. The study of fluid flow in the entrance region is very 

useful for many practical applications. Vorticity stream-function approach was used for this computational 

study. Poisson and vorticity-transport equations were used to find the velocity distribution in pipe. Dimensional 

equations are converted into dimensionless form, in order to insureflexibility of this work on pipe dimension 

and fluid properties. Finite volume method and upwind scheme used to solve the dimensionless form of Poisson 

and vorticity-transport equation.Computer program (C language) was written to solve the dimensionless form 

of equations to calculate the velocity distribution and pressure distribution. In the developing region velocity 

profile and pressure drop were studied. The computed results were compared with Hagen-Poiseuille equation 

and to studied effect of Reynolds number on pressure drop. 
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Nomenclature 

a Aspect ratio of pipe radius to length   D Diameter of pipe (m) 

L  Length of the pipe (m)    P Pressure (N/m2) 

P* Dimensionless pressure    r  Radial coordinate 

R Radius of pipe (m)     Re Reynolds number 

Um Bulk Velocity (m/s)    ur Radial velocity (m/s) 

ur* Dimensionless radial velocity    uz Axial Velocity (m/s) 

uz* Dimensionless axial velocity    V Velocity of fluid (m/s) 

z Axial coordinate     ρ Density of fluid (kg/m3) 

μ Dynamic viscosity of fluid (kg/m-s)   ν Kinematic viscosity (m2/s) 

η  Dimensionless axial coordinate   ξ Dimensionless radial coordinate 

ψ Stream function (m3/s)    Ω Vorticity (S-1) 

ψ* Dimensionless stream function   Ω* Dimensionless vorticity 

∇ Vector operator 

Subscripts 

e East interface     n North interface 

s South interface     w West interface 

E East node      W West node 

N North node     S South node 

P Central node 

Superscripts 

* Dimensionless quantity 
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Introduction 
 

Fluid flow in circular and noncircular pipes in commonly encountered in practice. The hot and cold water that we use 

in our homes is pumped through pipes. Oil and natural gas are transported hundreds of mile by large pipelines. 

Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications and fluid distribution 

networks. The fluid in such applications is usually forced to flow by a fan or pump through a flow section. A typical 

piping system involves pipes of different diameters connected to each other by various fittings or elbows to route to 

the fluid, valves to control the flow rate, and pumps to pressurize the fluid. Most of fluids are transported in circular 

pipes. This is because pipes with a circular cross section can withstand large pressure differences between the inside 

and the outside without undergoing significant distortion. 

 

One of the classical flow treated in introductory fluid mechanics lectures are laminar, fully developed pipe flow, in 

other words, the so-called Hagen-Poiseuille flow. The development of these flows from pre-assigned velocity 

profiles requires certain axial distances from the pipe. Irrespective of a particular inlet velocity profile or what 

happens in detail at the entrance of a pipe, the physical mechanisms behind such axial development of a flow are well 

established and understood. Owing to the no-slip velocity condition at walls, the fluid next to the wall is immediately 

slowed as soon as the flow enters a pipe. This retardation near the wall spreads inwards owing to viscous effects and 

the slowed-down fluid close to the wall causes the fluid in the centre to move faster, since the cross-sectional mass 

flow rate at any axial location remains constant. Ultimately, moving in the flow direction, the fully developed state of 

the flow is reached, the parabolic velocity distribution of the Hagen-Poiseuille flow develops. The closest location 

from the entrance where this phenomenon occurs defines the hydrodynamic entrance length as the distance from the 

inlet of the pipe to the location of the fully developed pipe flow. 

 

The entrance length, pressure gradient and velocity profile developments along the pipe length have been interest and 

concern of many engineers and scientists over the years. The problem is somewhat difficult and sensitive of nature. 

To simplify the problem by some assumptions and the accuracy of the solution will no doubt depend on these 

assumptions as well as on the method adopted. Theoretical solutions are obtained only for a few simple cases such as 

fully developed laminar flow in a circular pipe. The developing flow problems are very difficult to solve 

theoretically, so most of the developing flow problems are solve by numerically. The main objective of this project 

work is to numerically determine the development of dimensionless velocity and pressure distribution in the 

developing laminar flow of the pipe and to study the effect of Reynolds number in pressure drop. The study of fluid 

flow in the entrance region of a pipe is very useful for so many practical applications such as a short pipe leading to a 

diffuser or nozzle, the cooling water in an engine is transported by hoses to the pipes in the radiator where it is cooled 

as it flows, and the short pipe in fluid distribution networks. The present works deals with how the velocity and 

pressure varies with the developing laminar flow in a pipe. 

 

Literature Survey 
 

A fluid entering a circular pipe at a uniform velocity, Because of the no-slip condition, the fluid particles in the layer 

in contact with the surface of the pipe come to a complete stop. This layer also causes the fluid particles in the 

adjacent layers to slow down gradually as a result of friction. To make up for this velocity reduction, the velocity of 

the fluid at the midsection of the pipe has to increase to keep the mass flow rate through the pipe constant. As a 

result, a velocity gradient develops along the pipeThe Region of the flow in which the effects of the viscous shearing 

forces caused by fluid viscosity are felt is called the velocity boundary layer or just the boundary layer [2, 6]. The 

hypothetical boundary surface divides the flow in a pipe into two regions: the boundary layer region, in which the 

viscous effects and the velocity changes are significant, and the irrotational flow region, in which the frictional 

effects are negligible and the velocity remains essentially constant in the radial direction. The thickness of this 

boundary layer increases in the flow direction until the boundary layer reaches the pipe centre and thus fills the entire 

pipe, as shown in Fig. 1.The region from the pipe inlet to the point at which the boundary layer merges at the centre 

line is called the hydrodynamic entrance region, and the length of this region is called the hydrodynamic entry 

length. Flow in the entrance region is called hydro-dynamically developing flow since this is the region where the 

velocity profile develops. The region beyond the entrance region in which the velocity profile is fully developed and 

remains unchanged is called the hydro-dynamically fully developed region. The flow is said to be fully developed 

when the normalized temperature profile remains unchanged as well. Hydro-dynamically developed flow is 

equivalent to fully developed flow when the fluid in the pipe is not heated or cooled since the temperature in this case 
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remains essentially constant throughout. The velocity profile in the fully developed region is parabolic in laminar 

flow.  

 

 
Fig. 1. Fully Developed flow in pipe 

 

Maciej Matyka [1] reported solution to incompressible Navier - Stokes equations in non - dimensional form by 

Vorticity-Stream function approach are compared and results of them are analysed for standard CFD test case - 

drived cavity flow. Different aspect ratios of cavity and different Reynolds numbers are studied. 

 

Salih.A [2] streamfunction-vorticity formulation was among the first unsteady, incompressible Naiver-Stokes 

algorithms. The original finite difference algorithm was developed by from [1] at Los Alamos laboratory. For 

incompressible two-dimensional flows with constant fluid properties, the Naiver-Stokes equations can be simplified 

by introducing the stream-function and vorticity was dependent variables. 

 

Francois Dubois, Michel Salaun [3] studied numerically the Stokes problem of incompressible fluid dynamics in two 

and three-dimension spaces, for general bounded domains with smooth boundary. We use the vorticity–velocity-

pressure formulation and introduce a new Hilbert space for the vorticity. 

 

Sun Kyoung Kim [4] analysed the fully developed laminar flow of the Cross fluid between parallel plates under 

uniform heat flux. The formulation for the Nusselt number has been derived based on the analytically described 

velocity and flow rate. The velocity has been obtained analytically in terms of the shear rate. 

 

Shah and London [5] studied analytically the laminar forced convection flow in straight and curved. Analyses were 

performed for curved ducts of circular, rectangular, elliptical and annular cross sections and valuable correlations for 

friction factor and Nusselt number were deduced.  

 

Saffari et al. [6] studied experimentally and numerically the hydrodynamic entrance length of single and two-phase 

bubbly flow in helical coils. It was shown that the entrance length increases with the increase of the pipe diameter 

and decreases with the increase of the coil diameter. From the other side,  

 

Prabhanjan [7] studied experimentally the effect of coil configuration on the heat transfer rate aiming at developing 

correlations that relate the coil parameters with heat transfer to the in terms of dimensionless numbers. 

 

In general most of the time N-S equation are solved by numerically because non linearity involved in convective 

terms, pressure gradient acts as source term in momentum equation, but there is no separate equation to find out it, no 

pressure terms in continuity equation and simultaneously solving three partial differential equations is very difficult. 

There are many numerical methods available to solve the steady, unsteady, compressible and incompressible flow 

momentum equations that is artificialcompressibility method, pressure correction method and density based solver, 

vorticity-stream function approach [8]. In this work the problem is solved by vorticity and stream function approach 

and the main motive is to ensure the closeness of velocity distribution at the end of the pipe is almost same as the 

value obtained from Hagen-Poiseuille law.  
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GoverningEquation 

 

Laminar flow in pipe with circular cross section has been studied extensively as presented in the literature. The 

convenient coordinate system that best suit the present geometrical configuration is (r, θ, z). For steady, laminar, 

axisymmetric and incompressible flow of a Newtonian fluid inside a pipe, the governing equations are 

Continuity equation: 

 
1
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Problem Formulation 

 

The problem of interest is how the velocity and pressure change in a steady, laminar, incompressible and developing 

pipe flow shown in fig. 2. For the baseline case, at inlet of the pipe the bulk velocity Um = 0.01 m/s. Pipe dimensions 

are: radius R = 0.05 m and length L = 0.5 m. The fluid kinematic viscosity 𝜈 = 1 × 10−5 m
2
/s. 

 

 
Fig. 2. Problem description 

 

Vorticity-Streamfunction(𝛀 − 𝝍) Approach 
 

The Vorticity stream function formulation was among first unsteady, incompressible Naiver-Stokes algorithms. 

Naiver-Stokes equations can be simplified by introducing the stream-function 𝜓 and vorticity Ω    as dependent 

variables. It is an effective and popular approach for two dimensional steady, incompressible Naiver-Stokes 

equations. 

Velocity Stream function Relation. 
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Vorticity StreamfunctionRelation (Poisson Equation) 
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Vorticity Transport Equation 
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The dimensional form of Poisson and vorticity transport equation depends on object dimensions and fluid properties 

which limit its application for obtaining general solution for any dimension and any material. To insure the 

independency of present work over pipe dimensions and fluid properties the dimensional Poisson and vorticity 

transport equation is converted into non-dimensional form by using dimensionless parameters. The non-dimensional 

terms as follows. 

 

𝜉 =
𝑟

𝑅
, 0 ≤ 𝜉 ≤ 1.0 (7)𝜂 =

𝑧

𝐿
, 0 ≤ 𝜂 ≤ 1.0 (8) 

𝑢𝑟
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2𝜓
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Ω𝑅2

𝜈
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𝑃

𝜌𝑈𝑚
2

 

Where, 

 

R is radius, L is length and Um is inlet bulk velocity of the pipe, 𝜓 is streamfunction, Ω is vorticity, 𝑢𝑟
∗ is 

dimensionless radial velocity,𝑢𝑧
∗ is dimensionless axial velocity, 𝜓∗is dimensionless stream-function, Ω∗ is 

dimensionless vorticity and 𝜉, 𝜂 are the dimensionless r and z coordinates, respectively. 

 

Dimensionless form of velocity streamfunctionrelation, Poisson and vorticity transport equations as bellows. 
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Boundary Condition for stream function. 

 

Some initial values of streamfunction and vorticity needed for solve the Poisson equation and vorticity transport 

equation. Pipe inlet has uniform velocity 𝑈𝑚  (plug flow). At inlet of the pipe the bulk velocity is equal to axial 

velocity and radial velocity is zero. 

 

 𝑢𝑧 = 𝑈𝑚 , 𝑢𝑟 = 0 (13) 

𝜓∗ 𝜉, 𝜂 = 𝜉2  (14) 
 

The values of dimensionless stream function (𝜓∗) will be zero at the axis and 1.0 at the wall. In-between it will vary 

square of dimensionless radial coordinate (𝜉2). 

 

Boundary Conditions for Vorticity 

 

Vorticity value of inlet is zero (because inlet is plug flow). Radial velocity at axis is zero and the axial velocity 

change with respect to r at axis is zero, so the vorticity value at axis are zero. Vorticity creates at pipe wall and comes 

in to flow 

𝜓𝑖+1 = 𝜓𝑖 +  
𝜕𝜓

𝜕𝑟
 
𝑖
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𝜕2𝜓
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𝑖
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2
 (15) 

Node𝑖 + 1 – wall node 

Node𝑖 – below the wall node 

Taylor series for node i in terms of node i+1 
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In these momentum equations has only two unknowns (velocity & pressure).Once find the dimensionless axial and 

radial velocities by solving the dimensionless Poisson and vorticity transport equation, using those velocities in 

above equations to find out the dimensionless pressure drop in pipe. 

 

Numerical Formulation 
 

Simple one dimensional flow problems (Fully developed flow) with simple boundary conditions can be easily solved 

by analytical method. But many developing flow problems encountered in practice involved complicated geometries 

with complex boundary condition are not easy to solve by analytical method. In such cases, sufficiently accurate 

approximate solutions can be obtained by computers using a numerical method. 

 

Analytical methods are based on solving the governing differential equations together with the boundary conditions. 

On the other hand, numerical methods are based on replacing the differential equation by a set of n algebraic 

equations for the unknown velocities and pressures at n selected points in the medium, and the simultaneous solution 

of these equations results in the velocity and pressure values at those discrete point. 

 

For formulation of algebraic equation the pipe has been discretized into numbers of small cells by using various 

gridlines along r and z axes. The coordinate gas been chosen from the point of origin the r and z axes are taken 

positive in increasing direction and varies from 0 to 1.0 (as non-dimensional). The discretized pipe has been shown 

in fig. 3.After the discretization, it has been found that cells are classified into full cell (internal node) and half cell 

(boundary node). 

 
Fig. 1. Discretized Pipe 

 

The algebraic equation has been formed for each cell by solving the dimensionless form of Poisson and vorticity 

transport equation numerically. Finite volume method has been used to solve the dimensionless form of Poisson and 

vorticity transport equation numerically.by referring the equations dimensionless form of Poisson and vorticity 

transport equations are 
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Algebraic Formulation for Cells 

 

After discretization it has been found that the some nodal points having the four neighbour nodes, as shown in fig. 

Central node P having four neighbour nodes namely east E and west W along z axis, north N and south S along r 

axis. This type of cell named as full cell as shown in fig. 4. 

 

 
Fig. 2. Full Cell 

 

Integrate across the typical control volume P for Poisson equation 

 

   
𝜕

𝜕𝜉
 

1

𝜉

𝜕𝜓∗

𝜕𝜉
 +

𝑅2

𝐿2

1

𝜉

𝜕

𝜕𝜂
 
𝜕𝜓∗

𝜕𝜂
  

𝑒

𝑤

𝑛

𝑠

𝑑𝜂 𝑑𝜉 =    
−4Ω∗

𝑅𝑒
 

𝑒

𝑤

𝑛

𝑠

𝑑𝜂 𝑑𝜉  (22) 

𝑎𝑃𝜓𝑃
∗ = 𝑎𝐸𝜓𝐸

∗ + 𝑎𝑊𝜓𝑊
∗ + 𝑎𝑁𝜓𝑁

∗ + 𝑎𝑆𝜓𝑆
∗ + 𝑏 

Where 

𝑎𝐸 = 𝑎2𝑙𝑛  
𝜉𝑛

𝜉𝑠

 
1

𝛿𝜂𝑒

 ; 𝑎𝑊 = 𝑎2𝑙𝑛  
𝜉𝑛

𝜉𝑠

 
1

𝛿𝜂𝑤

; 𝑎𝑁 =  
1

𝜉
 
𝑛

Δ𝜂

𝛿𝜉𝑛

 

𝑎𝑆 =  
1

𝜉
 
𝑠

Δ𝜂

𝛿𝜉𝑠

 ;  𝑏 =
−4Ω𝑃

∗

𝑅𝑒
Δ𝜂Δ𝜉 

𝑎𝑃 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 

 

Before doing the integration of vorticitytransport equation combined with continuity equation. 

 

Integrate across the typical control volume P  
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This is a convection diffusion type equation, using first order upwind scheme to solve and get the algebraic equation, 

 

𝑎𝑃Ω𝑃
∗ = 𝑎𝐸Ω𝐸

∗ + 𝑎𝑊Ω𝑊
∗ + 𝑎𝑁Ω𝑁

∗ + 𝑎𝑆Ω𝑆
∗ 

𝑎𝐸 =
𝑎2

𝑅𝑒
 
𝜉𝑛

2 − 𝜉𝑠
2

𝛿𝜂𝑒

 + 𝑎𝜉𝑃 −𝑢𝑧 ,𝑒
∗ , 0 Δ𝜉  

𝑎𝑊 =
𝑎2

𝑅𝑒
 
𝜉𝑛

2 − 𝜉𝑠
2

𝛿𝜂𝑤

 + 𝑎𝜉𝑃 𝑢𝑧 ,𝑤
∗ , 0 Δ𝜉  

𝑎𝑁 =
2

𝑅𝑒

𝜉𝑛

𝛿𝜉𝑛

Δ𝜂 + 𝜉𝑛 −𝑢𝑟 ,𝑛
∗ , 0 Δ𝜂  
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𝑎𝑆 =
2

𝑅𝑒

𝜉𝑠

𝛿𝜉𝑠

Δ𝜂 + 𝜉𝑠 𝑢𝑟 ,𝑠
∗ , 0 Δ𝜂  

𝑎𝑃 = 𝜉𝑛 𝑢𝑟 ,𝑛
∗ , 0 Δ𝜂 + 𝜉𝑠 −𝑢𝑟 ,𝑠

∗ , 0 Δ𝜂 + 𝑎𝜉𝑃  𝑢𝑧,𝑒
∗ , 0 +  −𝑢𝑧 ,𝑤

∗ , 0  Δ𝜉 −  𝑢𝑟 ,𝑝
∗  Δ𝜂Δ𝜉

+
2

𝑅𝑒
 
𝜉𝑛

𝛿𝜉𝑛

+
𝜉𝑠

𝛿𝜉𝑠

+ 𝑙𝑛  
𝜉𝑛

𝜉𝑠

  Δ𝜂 +
𝑎2

𝑅𝑒
 𝜉𝑛

2 − 𝜉𝑠
2  

1

𝛿𝜂𝑒

+
1

𝛿𝜂𝑤

  

 

After discretization it has been found that the some nodal points having the three neighbour nodes, these types of 

cells are named as half-cell. One of the typical half-cell has been shown in fig. 5. As shown in Figure of typical half-

cell the Central node P having three neighbour nodes namely west W along z axis, north N and south S along r axis. 

The Poisson equation for half-cell changed into below algebraic equation, 

 

𝑎𝑃𝜓𝑃
∗ = 𝑎𝑊𝜓𝑊

∗ + 𝑎𝑁𝜓𝑁
∗ + 𝑎𝑆𝜓𝑆

∗ + 𝑏 

Where 

𝑎𝑊 = 𝑎2𝑙𝑛  
𝜉𝑛

𝜉𝑠

 
1

𝛿𝜂𝑤

;  𝑎𝑁 =  
1

𝜉
 
𝑛

Δ𝜂

2𝛿𝜉𝑛

 ;  𝑎𝑆 =  
1

𝜉
 
𝑠

Δ𝜂

2𝛿𝜉𝑠

 

𝑏 =
−4Ω𝑃

∗

𝑅𝑒
Δ𝜂Δ𝜉 ;  𝑎𝑃 = 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆  

 

 
Fig. 5. Half Cell 

 

Vorticity transport equation for half-cell changed into below algebraic equation, 

 

𝑎𝑃Ω𝑃
∗ = 𝑎𝑊Ω𝑊

∗ + 𝑎𝑁Ω𝑁
∗ + 𝑎𝑆Ω𝑆

∗  

𝑎𝑊 =
𝑎2

𝑅𝑒
 
𝜉𝑛

2 − 𝜉𝑠
2

𝛿𝜂𝑤

 + 𝑎𝜉𝑃 𝑢𝑧 ,𝑤
∗ , 0 Δ𝜉  

𝑎𝑁 =
2

𝑅𝑒

𝜉𝑛

𝛿𝜉𝑛

Δ𝜂

2
+ 𝜉𝑛 −𝑢𝑟 ,𝑛

∗ , 0 
Δ𝜂

2
 

𝑎𝑆 =
2

𝑅𝑒

𝜉𝑠

𝛿𝜉𝑠

Δ𝜂

2
+ 𝜉𝑠 𝑢𝑟 ,𝑠

∗ , 0 
Δ𝜂

2
 

𝑎𝑃 = 𝜉𝑛 𝑢𝑟 ,𝑛
∗ , 0 

Δ𝜂

2
+ 𝜉𝑠 −𝑢𝑟 ,𝑠

∗ , 0 
Δ𝜂

2
+ 𝑎𝜉𝑃𝑢𝑧 ,𝑃

∗ Δ𝜉 + 𝑎𝜉𝑃  −𝑢𝑧 ,𝑤
∗ , 0  Δ𝜉− 𝑢𝑟 ,𝑝

∗
Δ𝜂

2
Δ𝜉

+
2

𝑅𝑒
 
𝜉𝑛

𝛿𝜉𝑛

+
𝜉𝑠

𝛿𝜉𝑠

+ 𝑙𝑛  
𝜉𝑛

𝜉𝑠

  
Δ𝜂

2
+

𝑎2

𝑅𝑒
 𝜉𝑛

2 − 𝜉𝑠
2  

1

𝛿𝜂𝑤

  

 

Once find out the velocity distribution from solving the algebraic equation to substitute the corresponding values to 

momentum equation by using centraldifference scheme to solve and find out the pressure distribution along the pipe. 
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Flow Chart  

 

 
 

Result and Discussion 
  

In this study, how the velocity change in a steady, laminar, incompressible and developing pipe flow was 

investigated and then the results were compared with Hagen-Poiseuille law. 

 

Table1.Dimensionless radial velocity at various nodal points 

Radius (ξ) Length (η)=0.2 Length (η)=0.4 Length (η)=0.6 Length (η)=0.8 Length (η)=1.0 

1 0 0 0 0 0 

0.9 0.0029 0.0007 0.0003 0.00016 0.00003 

0.8 0.0097 0.0026 0.0011 0.00057 0.00008 

0.7 0.0171 0.0051 0.0022 0.00114 0.00014 

0.6 0.0222 0.0074 0.0034 0.00173 0.00018 

0.5 0.0240 0.0090 0.0042 0.00219 0.00021 

0.4 0.0225 0.0093 0.0046 0.00240 0.00021 

0.3 0.0186 0.0083 0.0042 0.00226 0.00019 

0.2 0.0132 0.0062 0.0032 0.00176 0.00014 

0.1 0.0068 0.0033 0.0017 0.00097 0.00007 

0 0 0 0 0 0 

 

The computational result of radial velocity at some sequential points has been shown in Table.1 and graphical 

representation shown in fig. 6.Radial velocity at inlet, axis and wall of the pipe is zero. In developing region radial 

velocity continuously change by small amount, once the flow is fully developed (at exit of the pipe) the radial 

velocity is almost zero. 
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Fig. 6. Dimensionless Radial Velocity 

 
Table 2. Dimensionless axial velocity at various nodal points 

ξ η=0.2 η=0.4 η=0.6  η=0.8 η=1.0 

1 0 0 0 0 0 

0.9 0.4669 0.4150 0.3974 0.3892 0.3853 

0.8 0.8462 0.7734 0.7467 0.7340 0.7280 

0.7 1.1285 1.0717 1.0463 1.0338 1.0279 

0.6 1.3204 1.3079 1.2952 1.2880 1.2845 

0.5 1.4408 1.4846 1.4937 1.4966 1.4978 

0.4 1.5113 1.6091 1.6448 1.6611 1.6686 

0.3 1.5502 1.6913 1.7531 1.7838 1.7984 

0.2 1.5703 1.7416 1.8247 1.8679 1.8890 

0.1 1.5797 1.7682 1.8650 1.9168 1.9424 

0 1.5825 1.7767 1.8784 1.9333 1.9604 

 

The computational result of axial velocity has been shown in Table. 2 and graphical representation shown in Fig 7. 

From that axial velocity profile continuously change in developing region; once the flow is fully developed (at the 

exit of the pipe) velocity profile remains unchanged. The velocity profile in the fully developed region is parabolic. 

 

 
Fig. 7. Dimensionless Axial Velocity 
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In a fully developed laminar flow each fluid particle moves at constant axial velocity along a stream line and the 

velocity profile doesn’t changed in the flow direction. There is no motion in the radial direction and thus the velocity 

component in the direction normal to the floe everywhere is zero. For the baseline case the length of the pipe is 

calculated from fully developed length formulae and the end of the pipe flow is changed to fully develop. Using that 

corresponding length the axial velocity at the end of the pipe is compared with the velocities obtained from Hagen-

Poiseuille law. 

 

𝑢𝑧 𝑟 = 2𝑈𝑚  1 −
𝑟2

𝑅2
  

 

Maximum velocity occurs at axis of the pipe,2𝑈𝑚 = 𝑢𝑚𝑎𝑥  

Dimensionless form𝑢𝑧
∗ = 2 1 − 𝜉2   

 

 
Fig.8. Comparison of axial velocity 

 

In fully developed flow the maximum axial velocity is two times of bulk velocity. Non dimensional inlet axial 

velocity (bulk velocity) of the pipe is 1. Once the flow reaches developed region the radial velocity is almost zero. 

From the computational analysis the maximum value of dimensionless velocity is 1.9605 at the axis of the pipe. This 

value is almost close to two times of bulk velocity. The velocity profile obtained from computational analysis 

compared with the velocity profile obtained from Hagen-Poiseuille law has been shown in fig. 8.Both the profiles are 

very similar so the computational value almost same as the standard value. 

 

 
Fig.9. Pressure Drop 
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Fluid flow in the hydrodynamic entrance region of a pipe the wall shear stress is the highest at the pipe inlet where 

the thickness of boundary layer is smallest, and decreases gradually to the fully developed value. Therefore the 

pressure drop is higher in entrance regions of a pipe. The dimensionless pressure distribution at pipe wall and axis 

along the length has been shown in fig. 9. From the figure the pressure gradient is more in developing region 

compared to flow towards the developed region. The dimensionless pressure values at end of pipe (developed region) 

from computational analysis is compared with Hagen-Poiseuille law for check the correctness of pressure values in 

developed region. 

 

From figure
Δ𝑝

Δ𝑧
= −0.3202 𝑁 𝑚3  

 

From Hagen-Poiseuille law 
𝑑𝑝

𝑑𝑧
=

−8𝜇𝑈𝑚

𝑅2 = −0.32 𝑁 𝑚3  

 

Both the pressure gradient values are almost same so the correctness of computational is good. The negative sign 

shows the drop in pressure because for the writing of code, initial pressure value of pipe inlet is zero. 

 

Table 3. Pressure drop on various Re number 

Bulk Velocity 

m/s) 

Reynolds number 

(Re) 

Dimensionless Pressure drop 

(ΔP
*
) 

Dimensional Pressure drop (ΔP) 

(N/m
2
) 

0.005 50 2.993699 0.07842 

0.0075 75 2.72978 0.127845 

0.01 100 1.8899864 0.189986 

0.0125 125 1.664784 0.260123 

0.015 150 1.498472 0.337156 

 

The pipe dimensions and fluid properties are kept constant, only varying the Reynolds number by varying the bulk 

velocity. From computational analysis the axial and radial velocities are calculated by various Reynolds number and 

using that to find the dimensionless pressure drop. The dimensional pressure drop values are increasing by increase 

the Reynolds number shown in fig. 10. 

 

 
Fig.10. Pressure drop for various Re 

Conclusions 
 

The computational study has been carried out to determine the development of dimensionless velocity and pressure 

distribution in a steady, incompressible, laminar developing flow in a pipe. The effect of Reynolds number on 

pressure drop has been studied by varying the inlet bulk velocity. This numerical study is very useful to find out the 

velocity and pressure values in any particular location of the pipe. During the numerical study of developing laminar 
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flow in a pipe, the following conclusion were made. 

 In developing region dimensionless radial velocity continuously changed and once flow reached the 

developed region the radial velocity was zero 

 In developing region dimensionless axial velocity profile continuously changed and once the flow reached 

the developed region profile remains unchanged and shape like a parabola 

 Dimensionless axial velocity profile in developed region from computational study was almost same as the 

velocity profile obtained from Hagen-Poiseuille law 

 The dimensionless pressure gradient was more in developing region compared to the flow towards the 

developed region (end of pipe) andthe values from computational study was almost same as the values 

obtained Hagen-Poiseuille law 

 The dimensional pressure drop is increased by increasing the values of Reynolds number. 
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