A 43 year old Woman with Shortness of Breath and Rare Interstitial Lung Disease - A Case Study

S.Sridevi¹, M. Shyamala Devi², A. Peter Soosai Anandharaj³

¹Associate Professor, Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India

²Professor, Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India

³Assistant Professor, Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India

ABSTRACT

In this study, interstitial lung disease (ILD), the term used to refer certain diseases that cause damage (scarring) of lungs. The scarring caused by ILD is often irreversible and it can be classified based on different criteria (known cause, unknown cause, acute chronic, granulomatous, non-granulomatous, history of habitual activities like smoking, no smoking etc.). There are other things that cause or increase the risk of ILDs includes certain drugs, genetics or certain type of medical treatments like radiation or chemotherapy. The ILD is very much linked with the exposure to asbestosis and hypersensitivity pneumonitis. In this, we present one of the rarest cases of ILD in a non-smoking young woman who had a progressive growth of ILD and passed away in 2019.

Keywords: Interstitial Lung Disease, CT scan, Lung Bronchoscopy

Introduction

People with autoimmune diseases are very much exposure to increase the risk of developing ILD's. In some cases, the causes are undefined and they are all referred as idiopathic pulmonary fibrosis. Some of the medications may slow down the damage of lung caused by ILD, but regaining of the full use of lungs are not possible at any stage. Lung transplantation may be an option for some people who have ILD based on their health condition and various parameters. ILDs can be classified broadly based on unknown and known cause, connective tissue disorders, drug induced interstitial lung disease. Fig. 1. Shows the different types of ILDs based on the above factors

Types of ILD					
Exposure Related: asbestosis, silicosis, hypersensitivity pneumonitis	Treatment : chemotherapy, radiation therapy	Autoimmune: lupus, scleroderma, poly or dermatomyositis, rh eumatoid arthritis	Sarcoidosis	Idiopathic	

Fig. 1. Types of ILD

Interstitial Lung disease can also be described as DLD (Diffuse Lung Disease) that involves disorders in pulmonary parenchyma and interfere with the oxygen and carbon dioxide exchange. ILD includes extensive alteration of alveolar and the architecture of airway

Symptoms of ILD and the steps to be taken

Shortness of breath is the common symptom of all the ILD's and it is accompanied by chest pain, dry cough, tightness in the chest, fatigue and sometimes weight loss. Most of the cases, the symptoms appear only when the lung has severely affected and in some cases it can develop life threatening complications. Treatment of ILD include chest X-ray or CT scan initially and the total capacity of the lung may be measured using lung function test. From the Lung function test, the level of deformation of lungs may be measured and based on that next level of treatment may be started.

To diagnose a specific ILD and for serious cases, different invasive procedures such as lung biopsy or a bronchoscopy may be carried out. Based on the severity and the type of ILD, the treatment also varies from patient to patient. Since lung damage by ILDs are irreversible and also progressive in nature, so treatment may be on reducing the initials symptoms and to slowdown the progression thereby increasing the life time. Some sort of medication, oxygen therapy and pulmonary rehabilitation may also be recommended to improve the quality of life and to slow down the progression rate. Lung Transplantation may be suggested for those having extreme severity in the disease progression.

Case Report

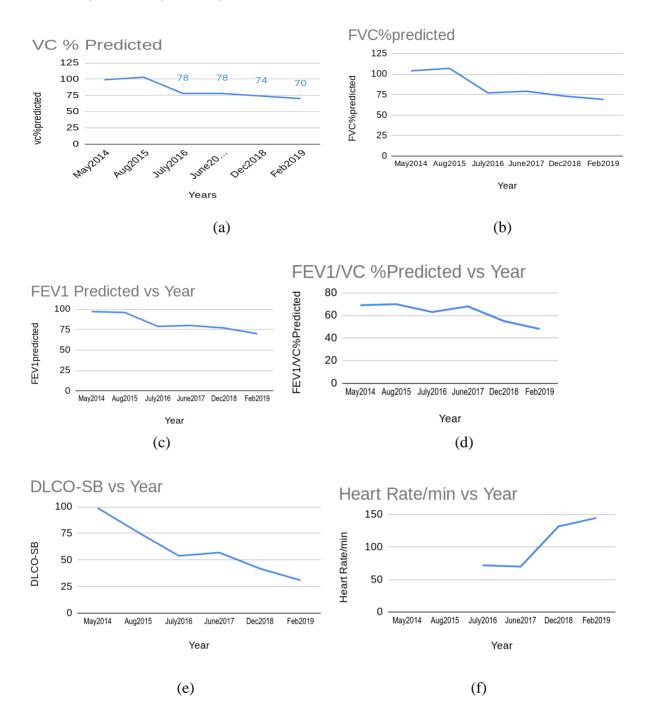
A 43 year old married woman with a history of dry cough, shortness of breath and tightness in chest admitted in 2014 for initial diagnosis. Her family doctor suggested some normal antibiotics for the relief of the issue but after few days again she was presented with the same problem. This time, the general practitioner suggested her to consult a pulmonologist for further investigation. She was a non-alcoholic, non-smoker and no evidence for hazardous things.

There were no evidence of chest pain, rashes in the skin, pain in joints, tuberculosis etc. Pulmonary function test was initially done and the results showed abnormality. She was advised

to take chest X-ray and the result showed increased diffuse reticulonodular shadow. On series of investigation, her liver and renal functions were normal and tested for rheumatoid and the relative factors were negative. She was admitted in the hospital for further investigations.

Diagnosis and Treatment

To identify the type of disease, various diagnosis procedures were carried out High Resolution Computer Tomography (HRCT) was done and the report showed honeycombing and basal fibrosis in lungs. There were many findings in HRCT: a) Honey combing b) apical, emphysema c) traction bronchiectasis (mainly in the basal and sub pleural regions) d) scarring of lung parenchyma. Lung biopsy was not done due to severe functional impairment of the patient. The range of clinical parameters of normal patient is given in Table. 1. The Initial PET results of the patient discussed in this case study are shown in Table 2.


Table 1.	PET Test	values for	Normal	patient
Iunic II		values for	1 (OI IIIGI	patient

May 2014
80% to 120%
75% to 120%
75% to 120%
>60% to 120%
80% to 120%
80% to 120%
75% to 85%

Table 2.	PFT	Test	Result
----------	-----	------	--------

Parameters	May 2014	August 2015	July 2016	June 2017	Dec2018	Feb 2019
VC%	99	103	78	78	74	70
Predicted	77	105	70	70	/4	70
FVC%	104	107	77	79	73	69
Predicted	104	107	11	19	15	09
FEV1%	97	96	79	80	77	70
Predicted)1)0	1)	00	11	70
FEV1/VC	69	70	63	68	55	48
Predicted	07	70	05	00	55	40
DLCO-SB	99	76	54	57	42	31
DLCO-VA					54	43
Heart			72	70	132	145
Rate/Min			12	70	132	145
Oxygen	99	95	88	88	89	62
Saturation	73))	00	00	09	02

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 5, 2021, Pages. 1492 - 1498 Received 15 April 2021; Accepted 05 May 2021.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 5, 2021, Pages. 1492 - 1498 Received 15 April 2021; Accepted 05 May 2021.

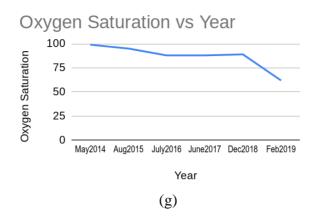


Fig. 2 pulmonary function tests from 2014 to 2019 (a)- vital capacity (b) Forced vital capacity (c) Forced Expiratory Volume (d) FEV1 (e) diffusing capacity of the lung for carbon monoxide (DLCO) (f) Heart Rate/min (e) oxygen saturation (arrow indicates patient was receiving supplemental oxygen). Start: oxygen saturation at the beginning of the 6MWD; end: oxygen saturation at the end of the 6MWD.

The Woman had a continuous cough with a sputum and had a 500 m walk test. The patient was given steroid with a dosage of 20 mg and it was gradually decreased to 10 mg. because of side effects. There were no improvement in her dyspnoea on exertion had deteriorated progressively. PFTs performed continuously and the results revealed that there were no stabilisation of DLCO and FEV1, FVC and VC

Result and Discussions

Interstitial lung disease (ILD) is a very broad term for over 200 different diseases that includes variation in terms of clinical process, treatment and prognosis. Among these various pulmonary fibrosis, detecting appropriate management and protecting prognosis is very critical. Idiopathic pulmonary fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias and has a worse prognosis than other ILD. From the above case study, it is noted that the survival rate ranges from 3 to 5 years only even if the patient underwent various treatments and procedures. The patient was diagnosed in the year 2014 and she was under medication and follow-up treatments by pulmonologists. Even Though, her condition was worsened year by year and sudden flare up was in the month of December 2018. She passed away in 2019 march. The patient's initial PFTs taken in 2014 revealed a number of variations in the parameters including VC (99% pred), FVC (104% pred), FEV1/VC(69% pred) and DLCO (99% pred). Resting oxygen saturation was normal (99%). But on continuous assessment, we can see the fast variation in the parameters year by year. In Feb 2019, the results were VC (70% pred), FVC (69% pred), FEV1/VC(48% pred), DLCO-SB(31% pred) and DLCO-VA(43% pred). Resting oxygen saturation was normal (60%) and the heart beat/min (145). For such patients, the only solution is to regularly monitoring their pulmonary function parameters and if required radiological examinations.

Conclusion

ILD patients should be monitored and treated at regular intervals and if required apart from medication some radiological procedures should be carried out including physiological treatment. However, the physician identifies that the progression of disease through declined representations and an accelerated growth of disease, the intervene of treatment in the ILD. Many of them might think that early detection of rapid progress is very much important for the patients to decide the type of treatments. Our patient was a young female, non-smoker and non-contact with ILD causing parameters.

Limitations and Future Studies

ILDs caused by unknown cause's type cases can be analysed and finding alternative procedures to identify the sudden/progressive growth of the disease might help the patient's life smoother and longer.

Acknowledgement

The article is based on the case history of author's family member and clinical guidance rendered from the medical support extended by SIMS and Global Hospital, Chennai.

References

- [1] Lalita Fernandes *, Rohit Vadala, Anthony Menezes Mesquita, Pradeep Vaideeswar (2015). Rare interstitial lung disease: Pulmonary Langerhans Cell Histiocytosis in a young non smoking Indian female,Indian Journal of Tuberculosis,Volume 62, Issue 1, January 2015, Pages 46-49
- [2] Win T, Thomas BA, Lambrou T et al .(2014), Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients. Eur J Nucl Med Mol Imaging, 41:337 -42
- [3] Carlos Robalo Cordeiro*, Tiago M Alfaro, Sara Freitas,(2013) Clinical case: Differential diagnosis of idiopathic pulmonary fibrosis,Cordeiro et al. BMC Research Notes, 6(Suppl 1):S1
- [4] Michael Kreuter, Peter Kardos and Victor Hoffstein, (2014), Management of idiopathic pulmonary fibrosis: selected case reports, European Respiratory Review issue 132, European Respiratory Review issue 132
- [5] Cottin V. (2013), The role of pirfenidone in the treatment of idiopathic pulmonary fibrosis. Respir Res; 14: Suppl. 1, S5
- [6] Raghu G, Collard HR, Egan JJ, et al.(2011), An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med; 183: 788–824.
- [7] Jonathan H. Chung, Christian W. Cox, Steven M. Montner, Ayodeji Adegunsoye, Justin M. Oldham, Aliya N. Husain, Rekha Vij, Imre Noth, David A. Lynch, Mary E. Strek,(2018) CT Features of the Usual Interstitial Pneumonia Pattern: Differentiating Connective Tissue Disease-

Associated Interstitial Lung Disease From Idiopathic Pulmonary Fibrosis, American Journal of Roentgenology. 210:307-313.

- [8] Noble PW, Albera C, Bradford WZ, et al.(2011),Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet; 377: 1760–1769.
- [9] Silva CI, Muller NL, Hansell DM, Lee KS, Nicholson AG, Wells AU.(2008), Nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis: changes in pattern and distribution of disease over time. Radiology 247:251–259
- [10] Das KM, Lee EY, Singh R, Enani MA, Al Dossari K, etal (2017) Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging 27:342–349