Bipolar Fuzzy AB- Algebra

M.S.Muthuraman, M.Sridharan, G.Sabarinathan, R. Muthuraj and
J. Kaliga Rani
${ }^{1,2,3}$ Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, Tamilnadu, India.
E-mail : msmraman@yahoo.com, msridharan1972@gmail.com, sabarinathan.g@gmail.com
${ }^{4}$ PG \& Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai - 622 001, Tamilnadu, India.
E-mail : rmr1973@yahoo.co.in
${ }^{5}$ Department of Mathematics, G.T.N Arts College (Autonomous), Dindigul, Tamilnadu , India.
*Corresponding Author: jkrgtnmaths@gmail.com

Abstract

. In this paper, we have introduced the concept of a bipolar fuzzy $A B$-ideal of $A B$ algebra and also we proved some relevant characteristics and theories. We also studied the bipolar fuzzy relations on AB algebras, notion of bipolar fuzzy AB -ideals in AB -algebras and some related properties are investigated. Also we introduce the homomorphic image and pre-images of bipolar fuzzy AB-ideals and present some of its properties.

Keywords: Algebra, AB-ideal, fuzzy AB-ideal, bipolar fuzzy set, bipolar fuzzy AB-ideals, Cartesian product of bipolar fuzzy AB ideals, Homomorphism

INTRODUCTION:

The concept of fuzzy set was introduced by Zadeh 1 in 1965. In fuzzy sets the membership degree of elements range over the interval $[0,1]$. The author Zhang ${ }^{2}$ commenced the concept of bipolar fuzzy sets as a generalization of fuzzy sets in 1994. In case of Bipolar-valued fuzzy sets membership degree range is enlarged from the interval [0, 1] to $[-1,1]$. K.Iseki ${ }^{3}$ introduced two classes of abstract algebras:BCK-algebra and BCI-algebras. It is known that the class of BCK-algebras is proper subclass of the class of BCI- algebras. In 2017^{4} introduced a notion of AB -ideals in $\mathrm{AB}-$ algebras. In this paper we define a new algebraic structure of bipolar fuzzy $A B$-ideal in $A B$-algebras and discuss the properties of bipolar fuzzy $A B$ ideals of $A B$-algebra under homomorphism.

2. Preliminaries

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition

An AB-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following axioms
i. $0 * x=0$
ii. $x * 0=x$
iii. $(\mathrm{x} * \mathrm{y})^{*}(\mathrm{z} * \mathrm{y}) *\left(\mathrm{x}^{*} \mathrm{z}\right)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,

In X , we can define a binary relation \leq by $\mathrm{x} \leq \mathrm{y}$ if and only if $\mathrm{x} * \mathrm{y}=0$. Then (x, \leq) is a partially ordered set.
2.2 Example Let $X=\{0,1,2,3\}$ be a set with the following table

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

$(\mathrm{X}, *, 0)$ is an AB-algebra.

2.3 Definition

In any AB -algebra X , the following axioms holds is a nonempty set X with a constant 0 and a binary operation * satisfying
i. $(\mathrm{x} * \mathrm{y}) * \mathrm{x}=0$
ii. $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x} * \mathrm{z} \leq \mathrm{y} * \mathrm{z}$
iii. $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{z} * \mathrm{y} \leq \mathrm{z} * \mathrm{x}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,

Remark: An AB-algebra is satisfies for all $x, y, z \in X$
i. $(x * y) * z=(x * z) * y$
ii. $(x *(x * y)) * y=0$

2.4 Definition

Let $(X, *, 0)$ be an AB-algebra. A non empty set I of X is called an ideal of X if it satisfies i. $0 \in I$
ii. $\mathrm{x} *(\mathrm{y} * \mathrm{z}) \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{I}$ imply $\mathrm{x} * \mathrm{z} \in \mathrm{I}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

2.5 Definition

A fuzzy set μ in an AB-algebra X is called a fuzzy AB-subalgebra of X if $\mu\left(x^{*} y\right) \geq \min \{\mu(x), \mu(y)\}$, for all $x, y \in X$

2.6 Definition

A fuzzy set μ in an AB-algebra X is called a fuzzy $A B$ ideal of X if
i. $\mu(0) \geq \mu(\mathrm{x})$
ii. $\mu\left(\mathrm{x}^{*} \mathrm{z}\right) \geq \min \{\mu(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \mu(\mathrm{y})\}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$

2.7 Definition

Let X be a non-empty set. A bipolar-valued fuzzy set or bipolar fuzzy set μ in X is an object having the form $\mu=\left\{\left\langle\mathrm{x}, \mu^{+}(\mathrm{x}), \mu^{-}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$, where $\mu^{+}: \mathrm{X} \rightarrow[0,1]$ and $\mu^{-}: \mathrm{X} \rightarrow[-1,0]$ are mappings. For the sake of simplicity, we shall use the symbol $\mu=\left(\mu^{+}, \mu^{-}\right)$for the bipolar-valued fuzzy set $\mu=\left\{\left\langle x, \mu^{+}(x), \mu^{-}(x)\right\rangle: x \in X\right\}$.

2.8 Definition

A bipolar fuzzy set μ of an $A B$-algebra X is a bipolar fuzzy subalgebra of $X \quad$ if for all $x, y \in X$,
i. $\mu^{+}\left(x^{*} y\right) \geq \min \left\{\mu^{+}(x), \mu^{+}(y)\right\}$
iii. $\mu^{-}\left(x^{*} y\right) \leq \max \left\{\mu^{-}(x), \mu^{-}(\mathrm{y})\right\}$.

2.9 Definition

A bipolar fuzzy set μ of an $A B$-algebra X is a bipolar fuzzy $A B$ ideal of X if for all $x, y \in X$,
i. $\mu^{+}(0) \geq \mu^{+}(x), \mu^{-}(0) \leq \mu^{-}(x)$,
ii. $\mu^{+}(x * z) \geq \min \left\{\mu^{+}\left(x *(y * z), \mu^{+}(y)\right\}\right.$,

$$
\text { iii. } \mu^{-}(\mathrm{x} * \mathrm{z}) \leq \max \left\{\mu^{-}\left(\mathrm{x} *(\mathrm{y} * \mathrm{z}), \mu^{-}(\mathrm{y})\right\} .\right.
$$

2.10 Definition

Let $\mu=\left(\mu^{+}, \mu^{-}\right), \varphi=\left(\varphi^{+}, \varphi^{-}\right)$are bipolar fuzzy subsets of an AB -algebra X Then a product $\mu \times \varphi=\left((\mu \times \varphi)^{+}\right.$, $\left.(\mu \times \varphi)^{-}\right)$where $(\mu \times \varphi)^{+}: X \times X \rightarrow[0,1]$ and $(\mu \times \varphi)^{-}: X \times X \rightarrow[-1,0]$ are mappings defined by
i. $(\mu \times \varphi)^{+}(\mathrm{x}, \mathrm{y})=\min \left\{\left(\mu^{+}(\mathrm{x}), \varphi^{+}(\mathrm{y})\right) /\right.$ for all $\left.\mathrm{x}, \mathrm{y} \in \mathrm{X}\right\}$.
ii. $(\mu \times \varphi)^{-}(\mathrm{x}, \mathrm{y})=\max \left\{\left(\mu^{-}(\mathrm{x}), \varphi^{-}(\mathrm{y})\right) /\right.$ for all $\left.\mathrm{x}, \mathrm{y} \in \mathrm{X}\right\}$.

2.11 Theorem

If $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$are two bipolar fuzzy AB-ideals of an AB-algebra X, then $(\mu \cap \varphi)$ is a bipolar fuzzy $A B$-ideal of an $A B$-algebra X.
Proof: Let $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$are two bipolar fuzzy AB-ideals of an AB-algebra X. For any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
i. $(\mu \cap \varphi)^{+}(0)=(\mu \cap \varphi)^{+}\left(0^{*} \mathrm{x}\right)$

$$
=\min \left\{\mu^{+}(0 * x), \varphi^{+}(0 * x)\right\}
$$

$$
\left.\begin{array}{rl}
& \geq \min \left\{\min \left\{\mu^{+}(0), \mu^{+}(\mathrm{x})\right\}, \min \left\{\mu^{+}(0), \varphi^{+}(\mathrm{x})\right\}\right\} \\
& =\min \left\{\mu^{+}(\mathrm{x}), \varphi^{+}(\mathrm{x})\right\} \\
& =(\mu \cap \varphi)^{+}(\mathrm{x}) \\
(\mu \cap \varphi)^{+}(0) & \geq(\mu \cap \varphi)^{+}(\mathrm{x}) \text { and } \\
(\mu \cap \varphi)^{-}(0,0) & =(\mu \cap \varphi)^{-}(0 * \mathrm{x}) \\
& =\max \left\{\mu^{-}(0 * \mathrm{x}), \varphi^{-}(0 * \mathrm{x})\right\} \\
& \leq \max \left\{\max \left\{\mu^{-}(0), \mu^{-}(\mathrm{x})\right\}, \max \left\{\varphi^{-}(0), \varphi^{-}(\mathrm{x})\right\}\right\} \\
& =\max \left\{\mu^{-}(\mathrm{x}), \varphi^{-}(\mathrm{x})\right\} \\
& =(\mu \cap \varphi)^{-}(\mathrm{x}, \mathrm{x})
\end{array}\right\} \begin{aligned}
&(\mu \cap \varphi)^{-}(0) \leq(\mu \cap \varphi)^{-}(\mathrm{x}) \\
& \text { ii. }(\mu \cap \varphi)^{+}(\mathrm{x} * \mathrm{z})=\min \left\{\mu^{+}(\mathrm{x} * \mathrm{z}), \varphi^{+}(\mathrm{x} * \mathrm{z})\right\} \\
& \geq \min \left\{\min \left\{\mu^{+}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{z})\right), \mu^{+}(\mathrm{y})\right\}, \min \left\{\varphi^{+}(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \varphi^{+}(\mathrm{y})\right\}\right\} \\
&=\min \left\{\min \left\{\mu^{+}(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \varphi^{+}(\mathrm{x} *(\mathrm{y} * \mathrm{z}))\right\}, \min \left\{\mu^{+}(\mathrm{y}), \varphi^{+}(\mathrm{y})\right\}\right\} \\
&=\min \left\{(\mu \cap \varphi)^{+}(\mathrm{x} *(\mathrm{y} * \mathrm{z})),(\mu \cap \varphi)^{+}(\mathrm{y})\right\} \\
&(\mu \cap \varphi)^{+}(\mathrm{x} * \mathrm{z}) \geq \min \left\{(\mu \cap \varphi)^{+}\left(\mathrm{x}^{*} *(\mathrm{y} * \mathrm{z})\right),(\mu \cap \varphi)^{+}(\mathrm{y})\right\}
\end{aligned}
$$

iii. $(\mu \cap \varphi)^{-}(\mathrm{x} * \mathrm{z})=\max \left\{\mu^{-}\left(\mathrm{x}^{*} \mathrm{z}\right), \varphi^{-}(\mathrm{x} * \mathrm{z})\right\}$

$$
\leq \max \left\{\max \left\{\mu^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \mu^{-}(\mathrm{y})\right\}, \max \left\{\varphi^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \varphi^{-}(\mathrm{y})\right\}\right\}
$$

$$
=\max \left\{\max \left\{\mu^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z})), \varphi^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z}))\right\}, \max \left\{\mu^{-}(\mathrm{y}), \varphi^{-}(\mathrm{y})\right\}\right\}
$$

$$
=\max \left\{(\mu \cap \varphi)^{-}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{z})\right),(\mu \cap \varphi)^{-}(\mathrm{y})\right\}
$$

$$
(\mu \cap \varphi)^{-}(\mathrm{x} * \mathrm{z}) \leq \max \left\{(\mu \cap \varphi)^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z})),(\mu \cap \varphi)^{-}(\mathrm{y})\right\}
$$

2.12 Theorem

If $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$are two bipolar fuzzy AB-ideals of an AB-algebra X, then $(\mu \times \varphi)$ is a bipolar fuzzy AB-ideal of an AB-algebra $X \times X$
Proof: Let $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$are two bipolar fuzzy AB-ideals of an AB-algebra $X \times X$. For any $(x, y) \in$ $X \times X$

$$
\text { i. } \begin{aligned}
(\mu \times \varphi)^{+}(0,0) & =(\mu \times \varphi)^{+}\left((0,0) *\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \\
& =(\mu \times \varphi)^{+}\left(\left(0 * \mathrm{x}_{1}\right),\left(0 * \mathrm{x}_{2}\right)\right) \\
& =\min \left\{\mu^{+}\left(0 * \mathrm{x}_{1}\right), \varphi^{+}\left(0 * \mathrm{x}_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\mu^{+}(0), \mu^{+}\left(\mathrm{x}_{1}\right)\right\}, \min \left\{\mu^{+}(0), \varphi^{+}\left(\mathrm{x}_{2}\right)\right\}\right\} \\
& =\min \left\{\mu^{+}\left(\mathrm{x}_{1}\right), \varphi^{+}\left(\mathrm{x}_{2}\right)\right\} \\
& =(\mu \times \varphi)^{+}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

$(\mu \times \varphi)^{+}(0,0) \geq(\mu \times \varphi)^{+}\left(x_{1}, x_{2}\right) \quad$ and
$(\mu \times \varphi)^{-}(0,0)=(\mu \times \varphi)^{-}\left((0,0) *\left(x_{1}, x_{2}\right)\right)$
$=(\mu \times \varphi)^{-}\left(\left(0 * x_{1}\right),\left(0 * x_{2}\right)\right)$
$=\max \left\{\mu^{-}\left(0 * \mathrm{x}_{1}\right), \varphi^{-}\left(0 * \mathrm{x}_{2}\right)\right\}$
$\leq \max \left\{\max \left\{\mu^{-}(0), \mu^{-}\left(\mathrm{x}_{1}\right)\right\}, \max \left\{\varphi^{-}(0), \varphi^{-}\left(\mathrm{x}_{2}\right)\right\}\right\}$
$=\max \left\{\mu^{-}\left(\mathrm{x}_{1}\right), \varphi^{-}\left(\mathrm{x}_{2}\right)\right\}$
$=(\mu \times \varphi)^{-}\left(x_{1}, x_{2}\right)$
$(\mu \times \varphi)^{-}(0,0) \leq(\mu \times \varphi)^{-}\left(x_{1}, x_{2}\right)$
ii. $\min \left\{(\mu \times \varphi)^{+}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) *\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)\right),(\mu \times \varphi)^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$

$$
=\min \left\{(\mu \times \varphi)^{+}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{y}_{1} * \mathrm{z}_{1}, \mathrm{y}_{2} * \mathrm{z}_{2}\right)\right),(\mu \times \varphi)^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}
$$

$=\min \left\{(\mu \times \varphi)^{+}\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right), \mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right),(\mu \times \varphi)^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$
$=\min \left\{\min \left\{\mu^{+}\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right), \varphi^{+}\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right)\right\}, \min \left\{\mu^{+}\left(\mathrm{y}_{1}\right), \varphi^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}$
$=\min \left\{\min \left\{\mu^{+}\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right)\right), \mu^{+}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\varphi^{+}\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right), \varphi^{+}\left(\mathrm{y}_{2}\right)\right\}\right\}$
$\leq \min \left\{\mu^{+}\left(\mathrm{x}_{1} * \mathrm{z}_{1}\right), \varphi^{+}\left(\mathrm{x}_{2}^{*} \mathrm{z}_{2}\right)\right\}$
$=(\mu \times \varphi)^{+}\left(x_{1}{ }^{*} z_{1}, x_{2}^{*} z_{2}\right)$
$=(\mu \times \varphi)^{+}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)$
$(\mu \times \varphi)^{+}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{*}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right) \geq \min \left\{(\mu \times \varphi)^{+}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{*}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)^{*}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)\right),(\mu \times \varphi)^{+}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}$

```
iii. \(\max \left\{(\mu \times \varphi)^{-}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) *\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)\right),(\mu \times \varphi)^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}\)
    \(=\max \left\{(\mu \times \varphi)^{-}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{y}_{1} * \mathrm{z}_{1}, \mathrm{y}_{2} * \mathrm{z}_{2}\right)\right),(\mu \times \varphi)^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}\)
    \(=\max \left\{(\mu \times \varphi)^{-}\left(\mathrm{x}_{1} *\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right), \mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right),(\mu \times \varphi)^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}\)
    \(=\max \left\{\max \left\{\mu^{-}\left(\mathrm{x}_{1}{ }^{*}\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right), \varphi^{-}\left(\mathrm{x}_{2}{ }^{*}\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right)\right)\right\}, \max \left\{\mu^{-}\left(\mathrm{y}_{1}\right), \varphi^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}\right.\)
    \(=\max \left\{\max \left\{\mu^{-}\left(\mathrm{x}_{1}^{*}\left(\mathrm{y}_{1} * \mathrm{z}_{1}\right), \mu^{-}\left(\mathrm{y}_{1}\right)\right\}, \max \left\{\varphi^{-}\left(\mathrm{x}_{2} *\left(\mathrm{y}_{2} * \mathrm{z}_{2}\right), \varphi^{-}\left(\mathrm{y}_{2}\right)\right\}\right\}\right.\right.\)
    \(\geq \max \left\{\mu^{-}\left(\mathrm{x}_{1} * \mathrm{z}_{1}\right), \varphi^{-}\left(\mathrm{x}_{2} * \mathrm{z}_{2}\right)\right\}\)
    \(=(\mu \times \varphi)^{-}\left(x_{1}{ }^{*} z_{1}, x_{2}{ }^{*} z_{2}\right)\)
    \(=(\mu \times \varphi)^{-}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right)\)
\((\mu \times \varphi)^{-}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{*}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right) \geq \min \left\{(\mu \times \varphi)^{-}\left(\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)^{*}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)^{*}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right),(\mu \times \varphi)^{-}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}\)
```


2.13 Theorem

Let $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$be two bipolar fuzzy sets in AB-algebra X such that $\mu \times \varphi$ is a bipolar fuzzy ABideal of $A B$-algebra $X \times X$ then
(i) Either $\mu^{+}(0) \geq \mu^{+}(x), \mu^{-}(0) \leq \mu^{-}(x)$ or

$$
\varphi^{+}(0) \geq \varphi^{+}(\mathrm{x}), \varphi^{-}(0) \leq \varphi^{-}(\mathrm{x}) \text { for all } \mathrm{x} \in \mathrm{X}
$$

(ii) If $\mu^{+}(0) \geq \mu^{+}(\mathrm{x}), \mu^{-}(0) \leq \mu^{-}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$, then
either $\varphi^{+}(0) \geq \mu^{+}(x)$ and $\varphi^{-}(0) \leq \mu^{-}(x)$ or $\varphi^{+}(0) \geq \varphi^{+}(x), \varphi^{-}(0) \leq \varphi^{-}(x)$
(iii) If $\varphi^{+}(0) \geq \varphi^{+}(\mathrm{x}), \varphi^{-}(0) \leq \varphi^{-}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$,
then either $\mu^{+}(0) \geq \mu^{+}(x), \mu^{-}(0) \leq \mu^{-}(x)$ or $\mu^{+}(0) \geq \varphi^{+}(x), \mu^{-}(0) \leq \varphi^{-}(x)$
Proof: Let $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$be two bipolar fuzzy sets of an AB-algebra $\mathrm{X} \times \mathrm{X}$.
i. Assume that $\mu(x)>\mu(0) \Rightarrow \mu^{+}(x)>\mu^{+}(0), \mu^{-}(x)<\mu^{-}(0)$ or

$$
\varphi(\mathrm{y})>\varphi(0) \Rightarrow \varphi^{+}(0)>\varphi^{+}(\mathrm{x}), \varphi^{-}(0)<\varphi^{-}(\mathrm{x}) \text {, for some } \mathrm{x}, \mathrm{y} \in \mathrm{X} \text {, Then }
$$

$$
(\mu \times \varphi)^{+}(x, y)=\min \left\{\mu^{+}(x), \varphi^{+}(y)\right\}
$$

$>\min \left\{\mu^{+}(0), \varphi^{+}(0)\right\}$
$=(\mu \times \varphi)^{+}(0,0)$ and
$(\mu \times \varphi)^{-}(\mathrm{x}, \mathrm{y})=\max \left\{\mu^{-}(\mathrm{x}), \varphi^{-}(\mathrm{y})\right\}$
$<\max \left\{\mu^{-}(0), \varphi^{-}(0)\right\}$
$=(\mu \times \varphi)^{-}(0,0)$
i.e. $(\mu \times \varphi)^{+}(x, y)>(\mu \times \varphi)^{+}(0,0)$ and $(\mu \times \varphi)^{-}(x, y)<(\mu \times \varphi)^{-}(0,0)$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,
which is a contradiction. Hence (i) proved.
ii. Assume that $\mu(x)>\mu(0) \Rightarrow \mu^{+}(x)>\mu^{+}(0), \mu^{-}(x)<\mu^{-}(0)$ or

$$
\varphi(y)>\varphi(0) \Rightarrow \varphi^{+}(0)>\varphi^{+}(x), \varphi^{-}(0)<\varphi^{-}(x), \text { for some } x, y \in X \text {, Then }
$$

$(\mu \times \varphi)^{+}(\mathrm{x}, \mathrm{y})=\min \left\{\mu^{+}(\mathrm{x}), \varphi^{+}(\mathrm{y})\right\}$
$>\min \left\{\mu^{+}(0), \varphi^{+}(0)\right\}$
$=(\mu \times \varphi)^{+}(0,0)$ and
$(\mu \times \varphi)^{-}(x, y)=\max \left\{\mu^{-}(x), \varphi^{-}(y)\right\}$
$<\max \left\{\mu^{-}(0), \varphi^{-}(0)\right\}$
$=(\mu \times \varphi)^{-}(0,0)$
i.e. $(\mu \times \varphi)^{+}(\mathrm{x}, \mathrm{y})>(\mu \times \varphi)^{+}(0,0)$ and $(\mu \times \varphi)^{-}(\mathrm{x}, \mathrm{y})<(\mu \times \varphi)^{-}(0,0)$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,
which is a contradiction. Hence (ii) proved.
(iii) The proof is similar to proof (ii) .

Remark: Converse of the above theorem is not true in general.

2.14 Definition

A fuzzy subset μ of X is said to have sup property if, for any subset A of X, there exist $a_{0} \in A$ such that $\mu\left(a_{0}\right)=\max$ $\{\mu(a) ; a \in A\}$.

2.15 Definition

Let X and Y be any two AB-algebras. Let $\mu=\left(\mu^{+}, \mu^{-}\right)$and $\varphi=\left(\varphi^{+}, \varphi^{-}\right)$are bipolar fuzzy subsets in X and Y
respectively. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping, then $\mathrm{f}(\mu)$,the image of μ is the bipolar fuzzy subset $\mathrm{f}(\mu)=\left((\mathrm{f}(\mu))^{+},(\mathrm{f}\right.$ $\left.(\mu))^{-}\right)$of Y defined by for all $f(x)=y \in Y$, where $x \in X$
and

$$
(\mathrm{f}(\mu))^{+}(\mathrm{f}(\mathrm{x}))= \begin{cases}\max \left\{\mu^{+}(\mathrm{x}): \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{y})\right\}, \text { if } \mathrm{f}^{-1}(\mathrm{y}) \neq \phi \\ 0, & \text { otherwise }\end{cases}
$$

$$
(\mathrm{f}(\mu))^{-}(\mathrm{f}(\mathrm{x}))= \begin{cases}\max \left\{\mu^{-}(\mathrm{x}): \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{y})\right\}, & \text { if } \mathrm{f}^{-1}(\mathrm{y}) \neq \phi \\ 0 & \text { otherwise }\end{cases}
$$

also the pre-image $\mathrm{f}^{-1}\left(\delta_{\varphi}\right)$ of σ_{φ} under f is a bipolar fuzzy subset of X defined by

$$
\left(\mathrm{f}^{-1}(\varphi)\right)^{+}(\mathrm{x})=\varphi^{+}
$$ $(\mathrm{f}(\mathrm{x})),\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{x})=\varphi^{-}(\mathrm{f}(\mathrm{x}))$.

2.16 Theorem : Let $f: X \rightarrow Y$ be a homomorphism of an $A B$-algebra .If μ is a bipolar fuzzy $A B$-ideal of X with sup property. Then the image $f(\mu)$ is a bipolar fuzzy AB-ideal of Y.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a homomorphism .
Let μ be a bipolar fuzzy $A B$-ideal For any $x, y \in X$
i. $(\mathrm{f}(\mu))^{+} \mathrm{f}(0)=\mu^{+}(0) \geq \mu^{+}(\mathrm{x})=(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{x})$ and
$(\mathrm{f}(\mu))^{-} \mathrm{f}(0)=\mu^{-}(0) \leq \mu^{-}(\mathrm{x})=(\mathrm{f}(\mu))^{-} \mathrm{f}(\mathrm{x})$
ii. $(\mathrm{f}(\mu))^{+}(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{z}))=(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{x} * \mathrm{z})$

$$
=\mu^{+}\left(\mathrm{x}^{*} \mathrm{z}\right)
$$

$$
\geq \min \left\{\mu^{+}\left(x^{*}\left(y^{*} z\right)\right), \mu^{+}(y)\right\}
$$

$$
=\min \left\{(\mathrm{f}(\mu))^{+} \mathrm{f}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{z})\right),(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{y})\right\}
$$

$$
=\min \left\{(\mathrm{f}(\mu))^{+}(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y} * \mathrm{z})),(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{y})\right\}
$$

$$
\geq \min \left\{(\mathrm{f}(\mu))^{+}\left(\mathrm{f}(\mathrm{x})^{*}(\mathrm{f}(\mathrm{y}) * \mathrm{f}(\mathrm{z})),(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{y})\right\}\right.
$$

$$
(\mathrm{f}(\mu))^{+}\left(\mathrm{f}(\mathrm{x})^{*} \mathrm{f}(\mathrm{z})\right) \geq \min \left\{(\mathrm{f}(\mu))^{+}\left(\mathrm{f}(\mathrm{x})^{*}(\mathrm{f}(\mathrm{y}) * \mathrm{f}(\mathrm{z})),(\mathrm{f}(\mu))^{+} \mathrm{f}(\mathrm{y})\right\}\right.
$$

and

$$
\begin{aligned}
(\mathrm{f}(\mu))^{-}(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{z})) & =(\mathrm{f}(\mu))^{-\mathrm{f}}(\mathrm{x} * \mathrm{z}) \\
& =\mu^{-}(\mathrm{x} * \mathrm{z}) \\
& \geq \max \left\{\mu^{-}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{z})\right), \mu^{-}(\mathrm{y})\right\} \\
& =\max \left\{(\mathrm{f}(\mu))^{-} \mathrm{f}(\mathrm{x} *(\mathrm{y} * \mathrm{z})),(\mathrm{f}(\mu))^{-} \mathrm{f}(\mathrm{y})\right\} \\
& =\max \left\{(\mathrm{f}(\mu))^{-}\left(\mathrm{f}(\mathrm{x})^{*} \mathrm{f}(\mathrm{y} * \mathrm{z})\right),(\mathrm{f}(\mu))^{-\mathrm{f}} \mathrm{f}(\mathrm{y})\right\} \\
& =\max \left\{(\mathrm{f}(\mu))^{-}\left(\mathrm{f}(\mathrm{x})^{*}(\mathrm{f}(\mathrm{y}) * \mathrm{f}(\mathrm{z})),(\mathrm{f}(\mu))^{-} \mathrm{f}(\mathrm{y})\right\}\right. \\
&
\end{aligned}
$$

Hence, $f(\mu)$ is a bipolar fuzzy AB-ideal in Y.
2.17 Theorem : Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a homomorphism of an AB -algebra .If φ is a bipolar fuzzy AB -ideal of Y , then $\mathrm{f}^{-1}(\varphi)$ is a bipolar fuzzy AB-ideal of X .
Proof: For any $x \in X$

$$
\text { (i). } \begin{aligned}
\left(\mathrm{f}^{-1}(\varphi)\right)^{+}(\mathrm{x}) & =\varphi^{+}(\mathrm{f}(\mathrm{x})) \leq \varphi^{+}(\mathrm{f}(0))=\left(\mathrm{f}^{-1}(\varphi)\right)^{+}(0) \\
\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{x}) & =\varphi^{-}(\mathrm{f}(\mathrm{x})) \geq \varphi^{-}(\mathrm{f}(0))=\left(\mathrm{f}^{-1}(\varphi)\right)^{+-}(0) \\
\left(\mathrm{f}^{-1}(\varphi)\right)^{(}(\mathrm{x})= & \varphi^{+}(\mathrm{f}(\mathrm{x}))\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{x})=\varphi^{-}(\mathrm{f}(\mathrm{x})) . \\
\text { (ii) }\left(\mathrm{f}^{-1}(\varphi)\right)^{+}\left(\mathrm{x}^{*} \mathrm{z}\right) & =\varphi^{+}\left(\mathrm{f}\left(\mathrm{x}^{*} \mathrm{z}\right)\right) \\
& =\varphi^{+}(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{z})) \\
& \geq \min \left\{\varphi^{+}\left(\mathrm{f}(\mathrm{x}) *(\mathrm{f}(\mathrm{y}) * \mathrm{f}(\mathrm{z})), \varphi^{+}(\mathrm{f}(\mathrm{y}))\right\}\right. \\
& =\min \left\{\varphi^{+}\left(\mathrm{f}(\mathrm{x})^{*} \mathrm{f}^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)\right), \varphi^{+}(\mathrm{f}(\mathrm{y}))\right\} \\
& =\min \left\{\varphi^{+}\left(\mathrm{f}\left(\mathrm{x} *+\mathrm{y}^{*} \mathrm{z}\right)\right), \varphi^{+}(\mathrm{f}(\mathrm{y}))\right\} \\
& =\min \left\{\left(\mathrm{f}^{-1}(\varphi)\right)^{+}\left(\mathrm{x}^{*}\left(\mathrm{y} \mathrm{y}^{*} \mathrm{z}\right)\right),\left(\mathrm{f}^{-1}(\varphi)\right)^{+}(\mathrm{y})\right\} \\
\left(\mathrm{f}^{-1}(\varphi)\right)^{+}\left(\mathrm{x}^{*} \mathrm{z}\right) & \geq \min \left\{\left(\mathrm{f}^{-1}(\varphi)\right)^{+}\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)\right),\left(\mathrm{f}^{-1}(\varphi)\right)^{+}(\mathrm{y})\right\} \text { and } \\
\left(\mathrm{f}^{-1}(\varphi)\right)^{-}\left(\mathrm{x}^{*} \mathrm{z}\right) & =\varphi^{-}\left(\mathrm{f}\left(\mathrm{x}^{*} \mathrm{z}\right)\right) \\
& =\varphi^{-}\left(\mathrm{f}(\mathrm{x})^{*} \mathrm{f}(\mathrm{z})\right) \\
& \leq \max \left\{\varphi^{-}\left(\mathrm{f}(\mathrm{x}) *\left(\mathrm{f}(\mathrm{y})^{*} \mathrm{f}(\mathrm{z})\right), \varphi^{-}(\mathrm{f}(\mathrm{y}))\right\}\right. \\
& =\max \left\{\varphi^{-}\left(\mathrm{f}(\mathrm{x})^{*} \mathrm{f}\left(\mathrm{y}^{*} \mathrm{z}\right)\right), \varphi^{-}(\mathrm{f}(\mathrm{y}))\right\} \\
& =\max \left\{\varphi^{-}\left(\mathrm{f}\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)\right), \varphi^{-}(\mathrm{f}(\mathrm{y}))\right\}\right. \\
& =\max \left\{\left(\mathrm{f}^{-1}(\varphi)\right)^{-}\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{z})\right),\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{y})\right\}
\end{aligned}
$$

$$
\left(\mathrm{f}^{-1}(\varphi)\right)^{-}\left(\mathrm{x}^{*} \mathrm{z}\right) \leq \max \left\{\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{x} *(\mathrm{y} * \mathrm{z})),\left(\mathrm{f}^{-1}(\varphi)\right)^{-}(\mathrm{y})\right\}
$$

$f^{-1}(B)$ is a bipolar fuzzy $A B$ - ideal in X.

ACKNOWLEDGMENTS

The Authors wish to their sincere thanks to the referee for the valuable useful comments.

CONFLICTS OF INTEREST:

The author have declared no conflicts of interest

REFERENCES

[1] L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), pp 338-365.
[2] W.R. Zhang, Bipolar fuzzy sets, Proc. of FUZZ-IEEE, pp 835-840, 1998.
[3] K.Iseki,S.Tanaka, A.Rosenfeld, An introduction to theory of BCK- algebras, Math.Japonica, 23 (1978) , pp.1-26.
[4] Areej Tawfeeq Hameed Baneen Najah Abbas, AB -Ideals of AB -Algebras, Applied Mathematical Sciences, Volume 11, 2017, no.35, pp 1715-1723.

