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ABSTRACT 

Recent research says that by adding relatively small amount of perturbation in the input vector of DNN (Deep Neural 

Network), the output can easily be altered. In this project we will be performing the attack by modifying only one pixel of 

the input vector. To do that we will be proposing a novel method, that will help us to generate one-pixel adversarial 

perturbation based on something called DE (Differential Evolution). This will be a black box attack (having less target 

information) and it can fool more types of neural networks because of features of DE. The results for this test shows that 

few of the original images present in CIFAR-10 testing dataset and few from the ImageNet testing images can be attacked to 

minimum of one target class just by changing one pixel. The same vulnerability is present in the original dataset of CIFAR-

10. Thus, this attack explores a different take on adversarial ML, showing that current Deep Neural Networks are 

susceptible to such low dimension attacks. 
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Introduction 
 

Recent studies have shown that DNNs are not that much secure and are vulnerable to various types of attacks; 

however it is still not confirmed what causes these vulnerabilities, various researchers are doing their research in 

order to find out the reason for this Studies have shown that adding perturbation on original images can make Deep 

Neural Network misclassify the image. Since then, many algorithms are being generated to form this so called 

“adversarial image”. So the general idea behind the adversarial image is to add a little amount of perturbation in the 

natural image. This perturbation may or may not be visible to the human eye but it won't change the image 

recognition ability of human but it can change the classifier's output. The perturbation should not be large otherwise 

it would be visible to human eye as well. 

 

This paper will be perturbing only one pixel and this will be a black box attack, the only thing that is needed is the 

probability labels of the classifier for the natural image. This attack will be having followingadvantages: 

 

1. Effectiveness - On Kaggle CIFAR-10 dataset, non-targeted attacks on three different neural networks gave 

68.71%, 71.66%, and 63.53% success rates and on the original CIFAR-10 dataset we got 22.60%, 35.20%, 

and 31.40% success rates. 

2. Semi-Black Box Attack - Here there‟s no need for any information about the internal of the DNN, here the 

only thing which is needed is the probability labels for the target class. 

3. Flexibility - This attack will work on all types of DNN models. 

 

There will be a locality analysis as well. In locality analysis, attack will be executed near to the successful attack 

pixel, same pixel perturbation will be used but with a different pixel coordinates. The success rate of pixel near to 

successful pixel is actually effective and almost same among different DNNs. This actually shows that vulnerable 

areas are the receptive fields, not the pixels or neurons. This confirms a fascinating property that is being shared 

among Deep Neural Networks which does not depends on the DNN model or success rate of the attack. 
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AllConv 

 

 
Car  Car   Deer  Horse  Ship 

Airplane (82.4%)Airplane (82.0%)Dog (70.7%)Dog (80.0%)Car (90.7%) 

 

NiN 

 
Bird   Deer  Dog   Horse  Ship 

Frog (88.8%)Dog (86.4%) Cat (75.5%) Frog (99.9%)  Airplane (62.7%) 

 

VGG 

 
Bird   Cat  Cat  Deer  Ship 

Frog (86.5%) Bird (66.2 %)Dog (78.2%)Airplane (99.9%) Airplane (88.2%) 

Figure 1. One Pixel Attack success on 3 types of DNN on CIFAR-10 Dataset 

 

 
Bassinet   Cup   Hamster Kettle 

Paper Towel (16.2%) Soup Bowl (16.7%) Nipple (42.3%) Joystick (37.3%) 

Figure 2.One Pixel Attack success on ImageNet Dataset 

 

Related Works 
 

A. Methodology 

 

So the images that cause classifier to misclassify the image are called adversarial samples. So we have a function that 

takes image as an input and gives and output that is the probability label, so let𝑓 𝑥  𝜖 𝑅𝑘  be the output of the 

classifier where 𝑥 𝜖 𝑅𝑚∗𝑛  is the input. 
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Here R represents real numbers, m and n are dimensions of the input image, and k is the number of classes. 

 

So now we need to define an adversarial sample𝑥 ′ , which will be as follows: 

𝑥 ′ =  𝑥 + 𝜀𝑥  

{ 𝑥 ′  𝜖 𝑅𝑛  | 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 𝑥 ′  ≠ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓 𝑥 ) } 

 

in which 𝜀𝑥  𝜖𝑅
𝑚∗𝑛  is small amount of perturbation added to the input image and argmax is an operation that gives 

the maximum value from a target function. 

 

Now we need to search for adversarial samples, to do this we've to use those perturbation vectors that will increment 

the given soft-label 𝑓(𝑥)𝑡  in which the „t‟ represents the target class‟ index. 

 

So we can say that the whole scenario can be written as the following optimization problem: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜀𝑥𝑓(𝑥 + 𝜀𝑥)𝑡  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜀𝑥     ≤ 𝐿 
 

When talking about untargeted attacks, we need to minimize the soft label for the outputted class 𝑓(𝑥)𝑡 . 
So out equation would be: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜀𝑥−𝑓(𝑥 + 𝜀𝑥)𝑡  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜀𝑥     ≤ 𝐿 

 

The value of 𝜀 should be small, it should not be large enough that it changes the class of the input image, this would 

negate the adversarial sample creation and it will not be a misclassification. 

 

So we‟ve 𝑓(𝑥) as our target, which is basically an image classifier which will take n dimensional input vector “X”, 

where𝑋 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) is the original image being classified to class 𝑡 correctly so probability of X belonging to 

class 𝑡 will be 𝑓𝑡(𝑥) and we‟ve another vector 𝑒 𝑥 = (𝑒1, 𝑒2, … . , 𝑒𝑛) which is the perturbation according to the X. 

 

The target class be called 𝑎𝑑𝑣 and maximum modification allowed will be 𝐿 and 𝐿 is always measured as length of 

the vector𝑒(𝑥). So when it comes to targeted attacks, the main goal is to get an optimal solution for this equation: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑒 𝑥 ∗𝑓𝑎𝑑𝑣 (𝑥 + 𝑒 𝑥 ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑒(𝑥)    ≤ 𝑑 
 

Here the “d” is a tiny number, usually d = 1 in our case of one pixel attack. 

 

Till now we can say that we need to find 2 values: 

 

 Which pixel we need to perturb 

 Value of the modification 

 

B. Differential Evolution 

 

Differential Evolution also known as DE, is an optimization algorithm which is used to solve complex optimization 

problems. Differential Evolution belongs to the class of Evolutionary Algorithms. 

 

To optimize a problem solution using DE, we first need an initial solution set (usually it is some random values) then 

in each iteration another set of candidate solution will be generated, they are called children. After that children will 

be compared to their parents, the child will survive if it‟s fitness value is better than it‟s parent. Initially 400 child 

solutions are reproduced then in next iteration again 400 child will be produced and so on. Normally we‟ve 100 as 

the limit but this could be changed. 
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Storn and Price introduced this algorithm in 1990s. Many books have been published on theoretical as well as 

practical aspects of using DE in domains like parallel computing, multi-objective optimization, constrained 

optimization etc.  

 

So many variants of DE are being developed in an effort to improve optimization performance. There exist different 

schemes for performing crossover and mutation of agents in the basic algorithm mentioned above. 

 

 
Figure 3. A flowchart describing DE Fitness is defined as the confidence in the correct label; x1, x2, and x3 are 

randomly selected members of the parent population. 

 

We‟ll encode our perturbation into an array (numpy array), this will be our candidate solution which has to be 

optimized by Differential Evolution. The perturbation is actually a tuple having 5 values, namely x-y coordinates of 

the pixel and RGB value of the perturbation. Each perturbation will be modifying one pixel only. The candidate 

solution is generated by the formula: 
 

𝑥𝑖 𝑔 + 1 =  𝑥𝑟1
 𝑔 +  𝐹  𝑥𝑟2

 𝑔  – 𝑥𝑟3
 𝑔   

𝑤𝑕𝑒𝑟𝑒 𝑟1 ≠ 𝑟2 ≠ 𝑟3 

 

Where 𝑥𝑖  belongs to the set of candidate solutions, r1, r2, and r3 are arbitrary numbers, F has a value of 0.5 this is 

called scale parameter and g is the current index of generation. As mentioned earlier, the stop criterion is 100 

iterations but when the probability label for the target class is greater than or equal to 90% the premature stop 

criterion will occur, and when talking about non-targeted attacks it will stop when original class probability is lower 

than 5%. 

 

C. Models 

 

We‟ll be training 3 types of models viz. All Convolution Neural Network, Network in Network (NiN), and VGG16 

as our target networks on CIFAR-10 Dataset.  

The structures are defined in the following tables: 
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Table 1.AllConv 
“conv2d layer(kernel=3, stride = 1, depth=96) 

conv2d layer(kernel=3, stride = 1, depth=96) 

conv2d layer(kernel=3, stride = 2, depth=96) 

conv2d layer(kernel=3, stride = 1, depth=192) 

conv2d layer(kernel=3, stride = 1, depth=192) 

dropout(0.3) 

conv2d layer(kernel=3, stride = 2, depth=192) 

conv2d layer(kernel=3, stride = 2, depth=192) 

conv2d layer(kernel=1, stride = 1, depth=192) 

conv2d layer(kernel=1, stride = 1, depth=10) 

average pooling layer(kernel=6, stride=1) 

flatten layer 

softmax classifier” 

Table 2.NiN 

“conv2d layer(kernel=5, stride = 1, depth=192) 

conv2d layer(kernel=1, stride = 1, depth=160) 

conv2d layer(kernel=1, stride = 1, depth=96) 

max pooling layer(kernel=3, stride=2) 

dropout(0.5) 

conv2d layer(kernel=5, stride = 1, depth=192) 

conv2d layer(kernel=5, stride = 1, depth=192) 

conv2d layer(kernel=5, stride = 1, depth=192) 

average pooling layer(kernel=3, stride=2) 

dropout(0.5) 

conv2d layer(kernel=3, stride = 1, depth=192) 

conv2d layer(kernel=1, stride = 1, depth=192) 

conv2d layer(kernel=1, stride = 1, depth=10) 

average pooling layer(kernel=8, stride=1) 

flatten layer 

softmax classifier” 

 

Table 3.VGG16 

“conv2d layer(kernel=3, stride = 1, depth=64) 

conv2d layer(kernel=3, stride = 1, depth=64) 

max pooling layer(kernel=2, stride=2) 

conv2d layer(kernel=3, stride = 1, depth=128) 

conv2d layer(kernel=3, stride = 1, depth=128) 

max pooling layer(kernel=2, stride=2) 

conv2d layer(kernel=3, stride = 1, depth=256) 

conv2d layer(kernel=3, stride = 1, depth=256) 

conv2d layer(kernel=3, stride = 1, depth=256) 

max pooling layer(kernel=2, stride=2) 

conv2d layer(kernel=3, stride = 1, depth=512) 

conv2d layer(kernel=3, stride = 1, depth=512) 

conv2d layer(kernel=3, stride = 1, depth=512) 

max pooling layer(kernel=2, stride=2) 

conv2d layer(kernel=3, stride = 1, depth=512) 

conv2d layer(kernel=3, stride = 1, depth=512) 

conv2d layer(kernel=3, stride = 1, depth=512) 

max pooling layer(kernel=2, stride=2) 

flatten layer 

fully connected(size=2048) 

fully connected(size=2048) 

softmax classifier” 
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The settings of the networks are very close to the original models but they have slight modifications so that we can 

get the maximum classification accuracy. Both of the targeted and non-targeted attacks will work on these models. 

 

For both of the attacks, 500 natural images will be chosen from the CIFAR-10 Dataset randomly. 

 

Here we will be using Kaggle CIFAR-10 dataset but not the original one. The dataset contains around 3,00,000 

images which actually helps us to visually inspect the followings: duplication, blurring, clipping, rotation, adding few 

arbitrary bad pixels and so on. This data set is more practical since it simulates most common scenarios that image 

can contain random noise.  

 

For each natural image present in the data set, total of nine targeted attacks were executed which were trying to 

disturb the image to other nine classes. Till here only targeted attack was launched and the efficacy of the non 

targeted attack is completely dependenton the targeted attack results evaluation. 

If any of the original image can be perturbed to at least one of the target class out of the total classes present, the non-

targeted attack on this image will succeed. 

 

For ImageNet data set, we will be performing one non targeted attack using the previously used parameters of DE. 

We will be launching the attack on ImageNet data set by making use of a fitness function whose aim is to decrement 

the probability label of the actual class. 

 

Results 
 

Table 4. Success Rate of the Attack 

 LeNet ResNet 

1 Pixel Attack (Original) 58% 21% 

Random Pixel Attack 4.8% 3% 

Nearby Pixel Attack 33% 31.3% 

 

Table 4 shows the success rate of attack on both of the randomly chosen pixels, and nearby pixels. To obtain this 

result, first one pixel attack has to be executed. After that the same perturbation has to be used to change an arbitrary 

pixel in the true image and after that evaluate the success of the method. Now to obtain the results, one needs to 

execute both nearby and random pixel attack once per image for each successful attack in samples of the data set. 

 

After calculating the mean for all activation maps for the preceding successful and un-successful attacks, one can tell 

if there exist any obvious difference between successful and failed attacks. The graph is shown in the figure x. One 

can see that even the average difference failed to distinguish between successful and un-successful attacks. 

 

 
Figure 4. Average difference for all layers 
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Conclusions 
 

This paper showed that how a pixel change can cause an influence that spreads throughout the layers of the DNNs. 

The next module will use Activation Maps to properly examine the behavior of the perturbation within the DNN and 

it will tell us about the conflicting salience hypothesis. 

 

This paper highlighted the following things: 

 

 Vulnerability of Receptive Fields: Success rate on pixels near to the successfully attacked pixel are equally 

likely vulnerable. This actually shows that it‟s not neurons or pixels which are vulnerable but the receptive 

fields. 

 Similarity between Successful and Failed Attacks: Both failed and successful perturbation surprisingly 

shows similar behavior and this behavior is nowhere related to the decrement in confidence with the label of 

the class. There exists some un-successful attacks which failed to change the confidence but they may have 

influenced all of the layers of the neural network and they also behave in similar fashion to successful 

attacks. 
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