METODS OF TESTING RADIATION OF PULSARS IN VIRTUAL LABORATORIES

Barno Sattarova

Associate Professor, Department of "Methods of teaching physics and astronomy" Tashkent State Pedagogical University named after Nizami, E-mail:<u>barno-m@mail.ru</u>

Mukhabbat Makhkamova

Lecturer, Department of "Methods of teaching physics and astronomy". Tashkent State Pedagogical University named after Nizami E-mail: <u>muhabbatadham@gmail.com</u>

Abstract. The article describes methods for recording and studying signals from pulsating radio sources (pulsars) using virtual training observatories (VIREO) and determining the period and power of the pulsation.

Key concepts: pulsars, stellar physics, astronomical program, radiation sources.

Introduction

In 1946, J.Hay, S.Parsons, and J.Filmens were strong in the Swan constellation discovered a single source of radiation. This source is Swan A (Cyg A)began to be called [1, 89p]. (Sources of such radiation in each constellation after the category name, the letters A, V, S, ... and ect.). After that6 more such sources were discovered in two years. Radiation sources as a table in the Third Cambridge Catalog (referred to as 3C), compiled in 1959registered. To date, the number of such sources has exceeded 10,000gone [2, 29p].

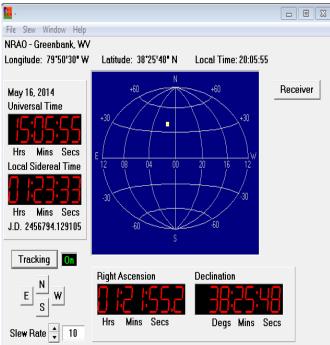
The main results and findings

If some sources of radiation belong to our galaxy (e.g. α Aldebaran's Crab Nebula), the rest are outside itbelongs to galaxies. However, most of them are irradiated in the radio rangethe total brightness is one thousandth, and it consists of heat radiation. The weakest sources of radiation are spiral (S) and irregular (Ir) galaxiesoutput and their radiation power in the decimeter range does not exceed 10^{-32} watts [10, 19p]. The radiation of elliptical (E) galaxies is 100 times stronger in this range. Wide shell the radiation of elliptical galaxies surrounded by and separated into D-type is simple 100 times more powerful than galaxies. Swan A and another series radiation of galaxies is of an insensitive nature, i.e., severalintensity in their radio spectrum obtained from measurements in the range Rayleigh-Jeansnot with the formulaI(v) $\approx H^{\frac{y+1}{2}} v^{\frac{y-1}{2}}$ is represented by the formula. Here H is the magnetic field strength, y-relativistic electron spectrumdegree indicator (dN(E) = $\frac{K}{E^y}$). Thus these kind of galaxies work as a powerful accelerator[2, 32p], [9, 56 p].

Today, the development of modern telescopes and computers the increase in the capabilities of technology further distant universe objectscloser study, drawing the right conclusions and the knowledge gained from themallows to use in education[4, 46p]. This article

is one such caseto study existing radiation sources on the basis of virtual laboratorieswe focus[5, 87p].

The purpose of the work - sources of pulsating radiation (pulsars) from recording and studying signals as well as the pulsation period and power determination[6, 19p].


A personal computer and a built-in "Virtual Learningobservatory "(VERIO Virtual Educational Observatory)Radio Astronomy of Pulsars will be needed [13].

Installing a virtual learning observatory on a computer. A virtual training if the observatory program is not installed on the computer, the program first is installed in the computer memory [7, 28p]. Then with the CLEA→VIREO buttons from the folder where the program files are collected, press the CLEA_VERIO buttong to the first page called PRODACTION OF CLEA. This is it from the top left of the page to a page called File→Login→Student Accounting page can include up to four student names or pseudonyms. Then THE VIRTUAL OBSERVATORY a page called (Virtual Tracking) opens. File→Run Exercise from this page (context 6 work), Radio Astronomy Pulsars, and a page with the same name opens on the screen. In his place after a while a page with a black screen will launch. Telescopes→Radio context on this page is selected[3]. A page with the radio telescope antenna will open on the screen (picture1).

Picture 1. Access the home page to start the radio telescope.

Use the "Off" button in the lower right corner of the pagewe open the page depicting the dome. Tracking at the bottom left of this page. Using the (observation) button and prepare the telescope for inspections (picture 2).

Picture 2. Preparing the telescope for inspections.

Recording quasar signals. To the right of the dome of the sky is the Receiver, at the top of the screen by confirming the buttona page is set up to record radio signals (picture 3).

🛃 No Pulsar in Beam! Aperture: 100 Meters	Beam (HPBW): 0 Deg 41.9'	
		Freq A 600.00 Freq A 100
		Vert. A 1.00 Horz. A 4.0
		Add Channel Align Yes
		Mode Stop Record Of
4.0 Sec	600.00 MHz	Volume 🖌 🔛 🕨

Picture 3.Receiver for recording radio signals.

In the upper left corner of the page where the Sky Dome is listed Pulsar Observation List in the context of Slew \rightarrow Hot List \rightarrow View / Select Hot List opens, about 8 pulsars information is provided. The pulsar is selected from this page for observation (picture 4).

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 2, 2021, Pages. 2400 - 2405 Received 20 January 2021; Accepted 08 February 2021.

- 📓	2.02							1
File Sle	window Help							
NR/	"Hot List"	•	View/Select from List					
Long	Set Coordinates		Add Current Item to List		ie: 20:15	27		
	6, 2014 rsal Time	+30 人	+60	+60	×+30	Re	ceiver	
	· 12+E 1	🏭 Pulsar	Observation Hot List					
Hrs	Mins Secs	List Sele	ection					
Local	Sidereal Time	0320+39		3h 23m	26.61s	19° 4	4' 53.1"	Weak pulse at higher frequencies
	חחיררי	0531+21			31.97s	100 C C C C C C C C C C C C C C C C C C	0' 52.1"	VERY strong pls, very short prd (Crab)
	n di li li di	0628-28		6h 30m	49.53s	-28° 3	4' 43.6"	Strong pulse - good example
	Mins Secs	0740-28		7h 42m	49.07s	-28° 2	2' 44.0"	Very strong pulse, short period
Hrs		0751+32		7h 54m	40.65s	32° 3	1' 57.4"	Weak pulse!
J.D. 2	456794.135724	1620-26	i	16h 23m	38.225	-26° 3	1' 53.7"	Very short period
		1913+16	i	19h 15m	28.00s	16° 0	6' 27.4"	Weak, short period (Taylor's binary!)
Tra	cking On	2154+40	1	21h 57m	01.92s	40° 1	7' 45.1"	Strong pulse, good dispersion
E	- <u>s</u>	Hrs	Mins Secs	Deg	s Mins	48 Secs		
Slew	Rate 👤 10							

Picture 4.Select a pulsar from the list.

Then the radio telescope is directed to the pulsar by clicking the script "Enter Sky Coordinate for Slew" [8, 56p].

Receiver button on the top right of the sky domevia, a page will open to record the radio signals above, to its frequency of the received radio signal (in megahertz)given. The receiver can record signals in the range of 400 to 1400 megahertz. Ability to amplify (attenuate) the signal under the frequency notation .There is a button that gives a chance to amplify up to 0.13, 0.25,0.50, 1.00, 2.00, 4.00, 8.00 times.Underneath it is an "Add Channel", three at a time (for example, 400, 600,1400 megahertz) can be recorded on the channel. "Mode" under "Add Channel"the button activates the receiver (Picture 5).

No Pulsar in Beam! Aperture: 100 Meters Beam (HPBW): 0 Deg 41.9'	
	Freq A 600.00 Freq A 100
	Vert. A 1.00 Horz. A 4.0 Gain V 1.00 Secs V 4.0
	Add Channel Align Yes
itanisteruntetaan itterukur anakerakera menerinterina asaratika karakerak	Mode Stop Record Off
4.0 Sec 600.00 MHz	Volume 💶 🕨

Picture 5. Receiving signals from pulsars.

Once the radio signals are recorded, it is necessary to analyze them: this is the page for it to close and homepage Tools \rightarrow Radio Pulsar Analysis will open a window of the same name through the context and save it to computer memorythe resulting records are output. The repetition of frequency and the power are obtained from these radio signal recordings (Picture 6).

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 2, 2021, Pages. 2400 - 2405 Received 20 January 2021; Accepted 08 February 2021.

🔀 VIREO Exercise - Radio Astrono	my of Pulsars		×	
File Telescopes Tools Wind	ow Help			
Results B				_ 🗆 🗙
Radio Pu	Ilsar Analysis	dow Help	(u. e.	
Spreads	0628-28		600.00 MHz Vertic	
				1.00 H
		λ		orizontal Pan Pan Rate
		Data Propertie	s	X
	1	Object:	0628-28	
10			Start: 56777.03497323	Aperture: 100
an and the second s	And the second	upper the month of the section	Receiver 1	Receiver 2 Receiver 3
dentification of the		Freq	uency (MHz): 600.00	1400.00 400.00
		F	Relative Gain: 1.000	1.000
		# of D	ata Points: 1601	Delta T (MSecs): 10.00
	100 Meter Re	File: C:\F	Program Files\CLEA\VIRE	EO\Users\ca.
	0.000 Refe	erence Cursor		Immune

Picture 6. Recover and read records stored in computer memory.

Assignments for students to complete the work:

- 1. Prepare the radio telescope for measurement.
- 2. Set the radio telescope to measure the pulsar.

3. Determine the pulsation period and power of the pulsar.

4. Analyze records drawn at different frequencies and draw conclusions.

The results are recorded in the form of the following tableand analyzed.

The	sign	of	The	period	of	The power of pulsation	Shift at different frequencies
pulsation			pulsat	ion			

The report should also provide an analysis of the results obtained. Analyzes in the form of "SWOT" table or "Mental map"is advisable to have.

Sources of pulsating radiation by doing this(pulsars) from recording and studying signals as well as pulsationstudy of the method of determining the period and power [4, 41p]].

Conclusion

The conclusion is that the if the instructor is a creator and he is capable of using computer technology skills, then students can be the same with their instructor by attaining abovementioned competencies. At a high level of teacher trainingto try new ideas in the educational process. The Internet and computer technology will help us the mosttakes to do this. Thus, educators should utilize from the modern computer applications and different software .

References:

1. Sattarov I. "Astrophysics" Part 1, Tashkent. "Iqtisod-moliya", 2007.

2. Sattarov I. "Astrophysics" Part 2, Tashkent. "Iqtisod-moliya", 2009.

3. Sattarov I., Qodirov BG, BegimkulovU.Sh. "Laboratory work on astrophysics on the computer." Tashkent. 2002.

- 4. Sattarova B. et al. Astronomy. Electronic textbook. 2007.
- 5. Martinov D. Ya. "Course of General Astrophysics". M.: "Nauka", 1992.
- 6. Martinov D. Ya. "Course of practical astrophysics". M.: "Nauka", 1983.
- 7. Priest E. "Solar magnetohydrodynamics", M., "Mir". 1985.
- 8. Fpunk-Kaminsky. "Elements of Plasma Physics", Moscow, Fizmat, 1970.
- 9. Martinov D. Ya. "Course of practical astrophysics". M.: "Nauka", 1983.
- 10. Sobolev V. V. "Course of theoretical astrophysics". M.: "Nauka", 1981.
- 11. Allen KU Astrophysical quantities. M., "Mir". 1977.
- 12. Minnart M. Practical Astronomy. M., "Mir". 1971.
- 13. VIREO, www.getsburg.edu/vireo