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Abstract - This study proposed a mathematical model of tuberculosis with drug resistance to a 

firstand second 

lineoftreatment.Thebasicreproductionnumberforthemodelusingnextgenerationmethodisobtained.T

heequilibrium point of the model was investigated and also found the global stability of the 

disease freeequilibrium and endemic equilibrium for the model. This study shows the effect of 

resistance rate of the first and second line of treatment to the infected and resistant population. If 

basic reproduction number is less than one, the disease free equilibrium is globally 

asymptotically stable and if basic reproduction number is greater than one, then the endemic 

equilibrium is a globally asymptotically stable. 

Keywords - Tuberculosis, Mycobacterium tuberculosis bacteria [Mtb], developed multi-drug 

resistant [MDR], Basic reproduction number, Stability. 

 

1. Introduction 

Tuberculosis  is  an  airborne disease  caused  by Mycobacterium  tuberculosisbacteria 

(Mtb).Ullahet al. [8] discuss a general SIR epidemic model which represents the 

directtransmission of infectious disease. It is an ancient disease with evidence of its existence 

being found in relics from ancient Egypt, India and China [1]. Today, this disease ranks as the 

second leading cause of morbidity and mortality in the world from a single infectious agent, after 

the human immunodeficiency virus (HIV) according to Daniel. [10] Interestingly, about one third 

of the world’s population is infected with Mycobacterium tuberculosis bacteriawith 

approximately nine million  people developing active tuberculosis and million people worldwide 

die from the disease every year. Approximately 480,000 people developed multidrug resistant 

(MDR) tuberculosis globally with 210,000 of those who developed MDR tuberculosis 

succumbing to it. In addition to posing a, major health concern to low and middle income 

countries, tuberculosis affect economic growth negatively. [3] Psycho-social distress that 

communities go through is enormous. This involves thinking about the loss of their loved ones 

and the economic impact of taking care of sick ones especially among the low income 

individuals. This impacts not only the individuals, but also the economic progress of the country. 

Zaman [7] gives, another category of people largely at risk of contracting tuberculosis are those 

who work closely or live close to a person with active tuberculosis and they could include health 

care workers, people living in crowded living spaces or confined places such as schools or 

prisons. According to Semenza et al. [5] over the last twenty five years, the mortality rate of 

tuberculosis has greatly decreased by 45% since and this is largely due to effective diagnosis and 

treatment. However, the world is still far from defeating the disease. About 8 billion US dollars 

per year is needed for a full response to the global tuberculosis epidemic in low and middle 

income countries by the year 2015 with a funding gap of 2 billion US dollars per year. This 
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amount excluded resources required for research and development, which was estimated to be 

about 2 billion US dollars yearly. Clearly, this reveals that the current investment in tuberculosis 

falls below the low and middle income country’sneeds. 

Tuberculosis is responsible for more deaths worldwide than any other infectious agent. Waaler 

and Anderson [4] developed a first tuberculosis model for the transmission dynamics of 

tuberculosis. The enormous progress in prevention and treatment, tuberculosis disease remains a 

leading cause of death worldwide and one of the major sources of concern is the drug resistant 

strain, MDR-TB (multidrug resistant tuberculosis) and XDR-TB (extensively drug resistant 

tuberculosis). Young et al. [2] studies, tuberculosis is curable provided an early diagnosis is made 

and one follows the proper treatment regimen which would take six months upto two years for 

the active tuberculosis to clear. Sharma et al. [9] given that the infected population is similar on 

the sociological and psychological effect rate. Cohen and Murray[11] modelled epidemics of 

multi-drug resistant tuberculosis of heterogeneous fitness. 

 

ModelAnalysis 

This study will first extend the standard SEIRS mathematical model for the transmission of 

tuberculosis which will demonstrate the transmission of the Mycobacterium tuberculosis in 

human hosts taking into account the multidrug resistant (MDR) tuberculosis. 

 

The ModelEquations 

This study presents a simple model that can easily be analysed so as to properly understand the 

dynamics of this disease. Humans can contract MTB tuberculosis through contact with 

individuals who are infected with the disease after which they enter the exposed phase where a 

proportion of this class develop active tuberculosis thus moving into the infectious class. If 

treatment is administered promptly, those who recover from the disease will move to the 

recovered class and those who delay treatment and develop MDR tuberculosis will move to the 

resistant class. Those who recover from MDR tuberculosis will move to the recovered class. 

Given that there is no permanent immunity to tuberculosis, the recovered can lose their immunity 

and become susceptible again. Figure represent the flow of individuals into the different 

compartments and it has been constructed with these assumptions: recruitment isby 

birth only, a variable population, a constant mortality rate, no permanent immunity to 

tuberculosis, no immediate infectively. 

Thehumanpopulationiscategorizedintosuch that at time t≥0 there are S, susceptible humans, 

E, exposed humans to tuberculosis, I, infected humans with active 

tuberculosis,R1,resistanthumanstothefirstlineoftreatment,R2,resistanthumanstothe second line 

of treatment, R, recovered humans. Thus the size of the human population is given 

asN=S+E+I+RES+R.Inourmodel,therecruitmentintothesusceptiblehuman 

populationisbybirthh.Thesizeofthehumanpopulationisfurtherincreasedbythepartial immune 

humans in R after they lose their immunity at the rate q. The size of human 

populationisdecreasedbynaturaldeaths(µ)andexposuretoMtb.Theexposedsusceptible to Mtb 

move to the exposed classes E with the force of infection being þ resulting in an 

increaseintheexposedclass.Theexposedclassisfurtherdecreasedbynaturaldeath(µ)and the 

proportion who move to the infected class I after developing active tuberculosis. The 

infectedclassIisalsoreducedbynaturaldeaths(µ),diseaseinduceddeath(α1),thosewho recover 

(ð) and also by those resistance rate to the first and second line of treatmentr1and 

r2respectively.Thustheinfectedclass(I),andtheresistantcl
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assess 

asses(R1andR2)gainpartial immunity at the rates (ð) and (ƒ) respectively thus moving to the 

recovered class R thus 

reducingtheirrespectiveclassesandalsoincreasingtherecoveredclass.Theresistantclasses 

R1 ,R2also reduced by natural deaths (µ) and disease induced deaths while the recoveredclass is 

reduced by natural deaths () and those who lose their partial immunity at the rateq. 

Following Table (1) and (2) gives the description of variables and parameters 

Table 1 

 

Description of variables 

S(t) = Susceptible humans 

E(t) = exposed humans 

I(t) = infected humans 

R1(t) = resistant to the first line of treatment 

R2(t) = resistant to the second line of 

treatment 

R(t) = Recovered humans 

 

Table 2 

 

Description of Parameters 

þ = Rate at which the susceptible become 

exposed to Mtb 

y = Infection rate 

α1= Disease induced death rate 

µ = Rate of natural death 

r1= Resistance rate of first line treatment 

r2= Resistance rate of second line treatment 

ð = Recovery after first line of treatment 

ƒ = Recovery after second line of 

treatment 

q = Rate at which recovered loss their 

immunity 

α2, α3 = Disease induced death rate after first 

and second resistance respectively 

 

DifferentialEquations 

From the above discussion, we get the following system of ordinary differential equations 

𝑑𝑠

𝑑𝑡
= λN-𝜇𝑆 − 𝛽𝑆𝐼 + 𝜌𝑅 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  𝜇 + 𝛾 𝐸 

𝑑𝑙

𝑑𝑡
= 𝛾𝐸 −  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 𝑙, 

𝑑𝑅1

𝑑𝑡
= 𝑟1𝑖 −  𝜇 + 𝛼2 + 𝛿 𝑅1 
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𝑑𝑅2

𝑑𝑡
= 𝑟2𝑖 −  𝜇 + 𝛼3 + 𝜑 𝑅2, 

𝑑𝑅

𝑑𝑡
= δ𝑅1 + π𝑅2 −  μ+ ρ R 

The above system of equations  is (1), 

To obtain the equilibrium points for the system of differential equation (1) by equating each of 

the equations to 0 as shown inbelow 

𝑑𝑠

𝑑𝑡
=λN- μS− 𝛽𝑆𝐼 + ρR = 0 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  𝜇 + 𝛾 𝐸 = 0, 

𝑑𝑙

𝑑𝑡
= 𝛾𝐸 −  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 𝑙 = 0, 

𝑑𝑅1

𝑑𝑡
= 𝑟1𝑖 −  𝜇 + 𝛼2 + 𝛿 𝑅1 = 0, 

𝑑𝑅2

𝑑𝑡
= 𝑟2𝑖 −  𝜇 + 𝛼3 + 𝜑 𝑅2, = 0, 

 

𝑑𝑅

𝑑𝑡
= δ𝑅1 + π𝑅2 −  μ+ ρ R = 0, 

 

The above system of equations is (2). 

Solving System (2),to get two equilibrium points,one being the disease free equilibrium while the 

other being the endemic equilibrium . 

Disease free equilibrium points (S,E,I,R1,R2,R) is expressed as follows: 

 

 X0=((S,E,I,R1,R2,R )=( (S,E,I,R1,R2,)=(
λN

𝜇
, 0,0,0,0,0) and endemic equilibrium point 

(S*,E*,I*,R1*,R2*,R*p)is expresse3 as follows: 

 

 

S ∗=
 𝜇+𝛾  𝜇+𝛼1+𝑟1+𝑟2 

𝛽𝛾
,

 E ∗=
𝛽𝑥 ( μ+ρ (λN− μx)

 𝜇+𝛾  𝛽𝑥  μ+ρ −p 

I ∗=
( μ+ρ (λN− μx)

 𝛽𝑥  μ+ρ −p 
,

𝑅1 ∗=
𝑟1( μ+ρ (λN− μx)

 𝜇+𝛼2+𝛿  𝛽𝑥  μ+ρ −p 
,

, 𝑅2 ∗=
𝑟2( μ+ρ (λN− μx)

  𝜇+𝛼3+𝜑   𝛽𝑥  μ+ρ −p  
 
 
 
 

 
 
 
 

 (3) 

Where x=S*,𝑝 = ρ(
δ𝑟1

( 𝜇+𝛼2+𝛿 
+

𝜑𝑟2

 𝜇+𝛼3+𝜑 
,) 

2.4 Condition of Existence /positivity of Equlibrium: 

The System will remain positive provided this condition holds: 

 

 λN- μx 

 𝛽𝑥 μ+ ρ − p 
> 0 ↔  λN- μx > 0 ↔  λN > 𝜇𝑥 

Substituting for  x, 
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λN> μ
 𝜇 + 𝛾  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 

𝛽𝛾
↔λN𝛽𝛾 >  𝜇 + 𝛾  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 > 1. 

The expression is the condition of existence. 

Let us look at the following system of following equations: 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  𝜇 + 𝛾 𝐸 , 

𝑑𝑙

𝑑𝑡
= 𝛾𝐸 −  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 𝑙 = 0,

𝑑𝑅1

𝑑𝑡
= 𝑟1𝑖 −  𝜇 + 𝛼2 + 𝛿 𝑅1 

𝑑𝑅2

𝑑𝑡
= 𝑟2𝑖 −  𝜇 + 𝛼3 + 𝜑 𝑅2, 

, 

Let X=(E,I,R1,R2)
T 

Then above system can be expressed in matrix form as shown below: 

𝑑𝑋

𝑑𝑡
= 𝐹 𝑋 − 𝑉 𝑋  

Where 

1 1)

0 ( )
, ( )

0 1 ( 2 ) 1

0 2 ( 3 ) 2

SI E r I

E
V X

r R

r R

   

 

  

  

      
   

   
      
   

     

 

O9 

𝐹(𝑋) =  

𝛽𝑆𝐼
0
0
0

 , 𝑉 𝑋 =  

𝛾𝐸 +  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 𝐼
 𝜇 + 𝛾 𝐸

−𝑟1 + (𝜇 + 𝛼2 + 𝛿)𝑅1

𝑟2 − (𝜇 + 𝛼3 + 𝜋)𝑅2

  

The Jacobian matrix of F(X) and V(X) at the disease  free equilibrium X0 are, 

𝐷𝐹 𝑋0 =  
𝐹1 0
0 0

 , DV(𝑋0) =  
𝑉1 0
0 0

 respectively 

Where  

 

𝐹1 =  
0
0
0

𝛽λN  

𝜇

0
0

0  
0 
0  

0
0
0
 and 

𝑉1 =  

 𝜇 + 𝛾 0 0                     0
0  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 0                            0

0
0

0
0

𝜇 + 𝛼2 + 𝛿
0

0
− 𝜇 + 𝛼3 + 𝜑 

  

Now 

𝑉−1

=

 

 
 
 
 
 
 

1

 𝜇 + 𝛾 
𝛾

 𝜇 + 𝛾  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 
𝛾𝑟1

 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝜇 + 𝛾)(𝜇 + 𝛼2 + 𝛿)
𝛾𝑟2

(𝜇 + 𝛾) 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝜇 + 𝛼3 + 𝜋)

0
𝑟1

 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 
𝑟1

 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝜇 + 𝛼2 + 𝛿)
𝑟2

 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝜇 + 𝛼3 + 𝜋)

0
0
1

(𝜇 + 𝛼2 + 𝛿)
0

0
0
0

−1

(𝜇 + 𝛼3 + 𝜋)

 

 
 
 
 
 
 

 

 

The next generation matrix of the system is given by 
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𝐸1𝑣1

−1

=

 

 
 
 

𝛽𝛾 λ

𝜇 𝜇+𝛾  𝜇+𝛼1+𝑟1+𝑟2 
N 

𝛽𝑁λ

 𝜇+𝛼1+𝑟1+𝑟2 
0                     0

0  𝜇 + 𝛼1 + 𝑟1 + 𝑟2                       0                            0
0
0

0
0

0 
                                  0

 

 
 

 

 

 

Now,toobtainthespectralradiusof F1V1-
1
, 

whichisdefinedasthelargesteigenvalueofandthespectralradiusfortheabovesystemisthebasicreprodu

ctionnumberandits expression is given by 

𝑅0 =
𝛽λNγ

 𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝜇 + 𝛾)𝜇
 

StabilityAnalysis 

In this section this study will determine the stability of the diseases free equilibrium point. This 

study can easily establish the local stability of the equilibriums by Routh Hurwitz criteria, so left 

it. This study will discuss only on the global stability of the disease free and endemic equilibrium. 

Global Stability of the Disease Free Equilibrium 

The local dynamics of a general SEIRS model is determined by the reproduction number R0. 

If R0<=I. then each infected individual in its entire period of infectiousness will 

producelessthanoneinfectedindividualonaverage.Thismeansthatthediseasewillbewipedoutofthepo

pulation. 

If R0>I,theneach infected individual in its entire infectious period having contact with 

susceptible individuals will produce more than one infected individual implying that the disease 

persist in the population. 

If R0=1thisisdefinedasthediseasethreshold, then one individual infects one more individual. For 

R0<=I the disease free equilibrium is locally asymptotically stable while for R0>I the disease 

free equilibrium becomesunstable.Thediseasefreeequilibriumpoint is points  

 (S, E, I, R1,𝑅2, R) =  (
λN

𝜇
, 0,0,0,0,0). 

Theorem: I If R0<= thenthediseasefreeequilibriumisofthesystem 

(S, E, I, R1,𝑅2, R) =  (
λN

𝜇
, 0,0,0,0,0).is globally asymptotically stable on Ω. 

Proof.ConstructthefollowingLasalle-Lyapunovfunction 

 

V(S, E, I, R1,𝑅2, R) =  (
λN

𝜇
, 0,0,0,0,0).on the  thepositively invariant compact setΩ. 

Define V S, E, I, R1,𝑅2, R = 𝛾𝐸 +  𝜇 + 𝛾 𝐼…………(4) 

Differentiate  above equation  and using the second and third equations of the system (1), we get 

 

𝑑𝑉

𝑑𝑡
= γ

𝑑𝐸

𝑑𝑡
+  𝜇 + 𝛾 

𝑑𝐼

𝑑𝑡
 

𝑑𝑉

𝑑𝑡
=   𝛽γS- 𝜇 + 𝛾  𝜇 + 𝛼1 + 𝑟1 + 𝑟2  𝐼 

𝑑𝑉

𝑑𝑡
=   𝜇 + 𝛾  𝜇 + 𝛼1 + 𝑟1 + 𝑟2 (𝑅0 − 1) 𝐼 

Which is strictly decreasing for R0<I. 

Definetheset E, I, R1,𝑅2, R ∈ Ω. 

Thelargestinvariantset is contained in the set E for which  E= 0 or I = 0 or R1= 0, R2= 0 Thus 
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by Lasalle invariantprincipalthediseasefreeequilibriumisgloballyasymptoticallystableonΩ. 

Global Stability of The Endemic Equilibrium Theorem 2. The endemicequilibrium 

∅ =  E, I∗,𝑅1
∗,𝑅2

∗,   

Given by equ(3) is globally asymptotically stable on Ω. 

Proof: To establish the global stability of the endemic equilibrium ∅, so constructLypunao 

function V1= Ω→R where  Ω={E(t),I(t),R1(t),R2(t)/E(t)>0,I(t)>0, R1>0,R2>0}as described 

by UllahZaman and Islam and  it is given as 

𝑉1 E, I, R1,𝑅2, R = 𝐿1[E − 𝐸∗ ln  
𝐸

𝐸∗
 + 𝐿2  𝐼 − 𝐼

∗𝑙𝑛  
𝑙

𝐼∗
  + 𝐿3  𝑅1 − 𝑅

∗
1 ln  

𝑅1

𝑅∗1 
  +

 𝐿4  𝑅2 − 𝑅
∗

2 ln(
𝑅2

𝑅∗2 
)                                                          ………………………(5) 

Where L1,L2,L3,L4 are positive constants to be later considered. 

Taking the derivative of the Lyapunov function V1as given in equation (5) yields 

𝑑𝑉1

𝑑𝑡
= 𝐿1[E− 𝐸∗  

𝛽SI

𝐸
−   𝜇 + 𝛾  ] + 𝐿2  𝐼 − 𝐼

∗  
γE

𝑙
−  𝜇 + 𝛼1 + 𝑟1 + 𝑟2   + 𝐿3  𝑅1 −

𝑅∗1 𝑟1𝐼𝑅1−(𝜇+𝛼2+𝛿)+ 𝐿4𝑅2−𝑅∗2 (𝑟2𝑙𝑅2 −(𝜇+𝛼3+𝜑 )          …………………….(6) 

CHOOSING     L1=L2=L3=L4 =1        equ(6) becomes 

=  𝐸−𝐸∗  𝜇 + 𝛾  𝑉𝑉1𝑅0 − 1 + (𝐼 − 𝐼∗) 𝜇 + 𝛼1 + 𝑟1 + 𝑟2  𝑉𝑉1𝑅0 − 1 + 𝑟1(𝑅1 −

𝑅∗1 )
(𝑅∗1 𝐼−𝐼

∗𝑅1)

𝑅∗1 𝑅
+ 𝑟2(𝑅2 − 𝑅

∗
2 )(

𝐼𝑅∗2−  𝐼
∗𝑅

𝑅∗2 𝑅2
) 

Thus 
𝑑𝑉1

𝑑𝑡
≤ 0 𝑖𝑓𝑓𝑅0 < 1 𝑎𝑛𝑑  𝑅∗1 I<𝐼

∗𝑅1 𝑎𝑛𝑑 𝑅∗2 𝐼 < 𝑅2𝐼
∗. 

To have Thus    
𝑑𝑉1

𝑑𝑡
= 0 𝑖𝑓𝑓 𝐸 = 𝐸∗, 𝐼 = 𝐼∗. 

𝑅1<𝑅
∗

1 ,𝑅1 = 𝑅∗1 ,.𝑅2 = 𝑅∗2 OR 𝑅0 = 1 𝐴𝑁𝐷 𝑅∗2 I= 𝐼∗𝑅2 

Define the set 

∅ = { E, I∗,𝑅1
∗,𝑅2

∗,  ∈
Ω
𝑑𝑉1

𝑑𝑡

= 0} 

Therefore the largest compact invariant set is singletone set Φ which is the endemic equilibrium. 

By Lasalle invariant principle Φ is globally asymptotically stable on Ω. 

NumericalSimulation 

Explain this result through graphically. Consider the parameters

 as: 

0.001, N 1, 000, 0.398,1, r1 0.4, r2 0.5, 0.7, 1 0.8,2  0.4,3 

0.3,1,1.2, 0.4 Then this study gives  R0 =0.1395 <1 and if the initial valuesof 

susceptible, exposed, infected, resistant of first and second line treatment population are 1, 2, 1, 

1, 1 and 1 respectively. The susceptible population goes to its steady state value while exposed, 

infected, resistant of first and second line treatment population approach to zero as time increase 

as shown in Figure 1. So that the disease free equilibrium is globally asymptotically stable. 
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Again if, we take the parameters of the system as: = 0.015, γ N=1,000,β= 0.398,λ= 1, 

r1 = 0.4, r2= 0.5, µ =0.7, α1= 0.8,α2= 0.4, α 3=0.3, δ =1,π = 1.2,ρ= 0.4. 

Then(E* S*, E* ,I*, R1, *,R2* ,R* )= (10.25,4.8,2,38,45,84)and  R0 = > 2.091 1. 

If the initial values of susceptible, exposed, infected, resistant of first and second line 

treatment population are 1, 2, 1, 1, 1 and 1 respectively. Therefore by theorem (2), the 

endemic equilibrium is a global asymptotically stable as shown in Figure 2 
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Let us take all the parameters are fixed except the resistance rate of the first and second 

lineof treatments, found that the infected population decreases as the resistance rate of 

the firstand second line of treatment increases which is shown in figure 3(a) and (b). 

Thereforeinfected population moves to resistant population of the first line of treatment 

and to 

theresistantpopulationofthesecondlineoftreatment,asresistantrateincreasesrespectively. 

Figure.3(a) Changes in the infected population with respect to resistance rate of the first line 

treatment, keepingallotherparametersare fixed. 
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Figure.3(b)Changesintheinfectedpopulationwithrespecttoresistancerateofthesecondlinetreatm

ent,keepingall otherparametersare fixed 

 

Similarly again we take all parameters are fixed except the resistance rate of the first line 

andthe second line of treatment, found that the resistant population of the first line 

treatmentdecreaseswhenresistancerateofthefirstlinetreatmentincreasesi.e.resistantpopulati

on moves to recovered population while the resistant population of the second line 

treatmentincreases when the resistance rate of the second line of treatment increases i.e. after 

thesecond line treatment, the infected population comes into resistant population which   

showninfigure4(a)and 4(b)respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4(a)Changesintheresistantpopulationwithrespecttoresistancerateofthefirstlineoftreatme

nt,keepingall the otherparametersarefixed. 
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Figure.4(b)Changesintheresistantpopulationwithrespecttoresistancerateofthesecondlineoftreat

ment,keepingall theotherparametersarefixed. 

  Conclusion 

This study analyzed the local and global stability of the equilibrium points, found that 

whenthe basic reproduction number Ro 1, then disease dies out and when the basic 

reproductionnumberRo1,then diseasepersists. 
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