A Comparative Analysis on Awareness Among Female Students of Technical and Medical Field Associated within Colleges From Tamilnadu and Pondicherry regarding gynaecological Cancers by Random Sampling Method Using Statistical Analysis

Mohamed Adil A.A^{1,2*}, Saba Fathima¹, Hari priya², Ashok Kumar pandurangan³, Shyam kumar⁴, Revathi. K^{2*}, Anandraj Vaithy⁵, Nibeditha dey², Dannie Macrin²

¹Meenakshi academy of higher education and research, chennai, India ²Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam,

Chennai – India

B.S.Abdur Rahman Crescent institute of science and technology, Chennai, India
 School of medicine, John Hopkins University, Baltimore, Maryland, United states of America
 Faculty of Medicine, Mahatma Gandhi medical college and research institute (SBV), Pondicherry,

India

Correspondence:

Mohamed Adil A.A, Associate professor, Meenakshi academy of higher education and research, Chennai, India. directoriif@maher.ac.in, adilmdaa@gmail.com, adil.sse@saveetha.com

Abstract:

Aim: Comparative analysis on awareness of cervical cancer among female students perceiving technical and medical field associated education.

Materials and Methods: This study employs a validated questionnaire to investigate knowledge and attitudes relating to cervical cancer. N= 300 samples were analysed with SPSS software for investigating the parameters such as the awareness of cervical cancer prevention, knowledge on screening, awareness on risk factors, and family history. The sample size was calculated by maintaining G-power 80%, α =0.05, and a confidence interval of 95%.

Results: The knowledge on cervical cancer from the survey was found that technical students (62.8%) had a higher understanding of self-effort compared to medical students (37.2%). The knowledge on ovarian cancer from the survey found that technical students (62.8%) had a higher understanding of self-effort compared to medical students (37.2%). The knowledge on uterine cancer from the survey was found that technical students (62.8%) had a higher understanding of self-effort compared to medical students (62.8%) had a higher understanding of self-effort compared to medical students (62.8%) had a higher understanding of self-effort compared to medical students (37.2%). The knowledge on vaginal cancer from the survey portrays that the technical students (62.8%) seem to have a higher understanding through self-effort when compared to medical students (37.2%). The statistical value by chi-square analysis was found to be statistically insignificant between the datasets. The significance value is P=0.807.

Conclusion: The medical students had retarded awareness when compared with the technical students. The significant gap with inadequate awareness on gynaecological cancer and lack of understanding due to social stigma was found to have retarded knowledge among medical students and technical students.

Keywords: Awareness, Risk Factors, Screening Techniques, Innovative Knowledge, Cervical Cancer Prevention, Community Medicine, Public Health, Medical Informatics.

1. Introduction

The cervical cancer symptoms are often attributed to other conditions affecting women. The previous studies showed that the frameworks regarding the particular knowledge and its determinants among the public and this study indicates factors contributing to the high morbidity and mortality rates of cervical cancer (McTiernan, Irwin, and VonGruenigen 2010). Creating awareness, providing knowledge about cervical cancer and the need for early detection is crucial for cervical cancer screening and health care applications (Nyengidiki 2015). Improving the result of cervical cancer screening and recovery by early diagnosis is the application-focused in this study (Aref-Adib and Freeman-Wang 2014)

Evaluation of preoperative symptoms and factors that may contribute to delayed diagnosis for women with ovarian carcinoma (Deligdisch, Kase, and Cohen 2013). When women are diagnosed with cancer limited to the ovary that has not spread their chance of survival is often high (Lacey et al. 2002). Ovarian cancer at a molecular level could reveal potential biomarkers of disease diagnosis and progression as well as possible therapeutic targets in areas (Pereira et al. 2016). Awareness of ovarian cancer symptoms and risk factors among women in the general population is low. Ovarian cancer is often diagnosed at late stages, when cure is difficult; consequently, heightening women's awareness of risk factors and symptoms might help to reduce delays in diagnosis (Lockwood-Rayermann et al. 2009).

Uterine cancer is the most rapidly increasing malignancy and the second most common gynecological malignancy (Lee *et al.* 2015). Uterine carcinomas account for the majority of cases of uterine cancer, while uterine sarcomas are rare and only account for 4.2% of all corpus uteri malignancies (Boll *et al.* 2012). Because of the rarity of papillary serous carcinomas, clear cell carcinomas and carcinosarcomas, only a few population-based follow-up studies on the outcomes of these types of uterine cancer have been reported (Creasman *et al.* 2004). Most of the outcome studies on uterine sarcomas have been based on small retrospective series from a single institution, which lacks the power to make significant conclusions (Oláh *et al.* 1991). This exploratory cross-sectional survey was conducted to understand the attitude towards awareness and perseverance towards disease management of uterine cancer among technical and medical fields associated, female students in universities. It will have potential applications in the field of community medicine to have a centralised database based on the area and locality of the patient. This will guide the medical practitioners and clinicians to approach patients well depending on their understanding about the disease (Tannock and Hill 1998)

About 161 research studies were found to be relevant to cervical cancer awareness in google scholar. Similarly, around 1,005 studies were found relevant in PubMed. The objective of a study conducted in 2019 was to assess the knowledge and attitudes towards cervical cancer screening and prevention. They suggested that cervical cancer is highly preventable and can be easily treated if detected at early stages (Mohamed adil a.a et al. 2019). A similar study by Efard and team suggested that the effects of some characteristics and risk factors associated with cervical cancer will aid in diagnosis and treatment on women's sexual life, quality, and

functional status (Efared et al. 2019; Akkuzu, Talas, and Erdogan 2012). Women with secondary and tertiary levels of education were more likely to have heard of cervical cancer (Mitiku and Tefera 2016). In the same way, students associated with patients with malignant metastatic diseases were more likely to know about the disease (Hailu and Mariam 2013).

Vaginal cancer is an uncommon gynecologic malignancy. The diagnosis of primary vaginal cancer is rare because most of these lesions will be metastatic from another primary site. Primary vaginal cancer is rare, making up 1% to 2% of all female reproductive tract cancers (Adams and Cuello 2018). The vaginal fornices are denoted as anterior, posterior, and lateral concerning the cervix (Gardner *et al.* 2015). The majority of these metastases arise from other reproductive organs such as the cervix, endometrium, or ovary, although they can also metastasize from distant sites such as the colon, breast, and pancreas (Ng *et al.* 2015). The human papillomavirus (HPV) is a known carcinogen for the tumor of the vagina, however, non-HPV based carcinogenic factors also exist. A study of this kind will hold potential application towards fabricating a medical database specific for diseases and individuals that can be of great use to medical practitioners and government public health agencies (Ng *et al.* 2015; Siegler *et al.* 2016) (Mohamed Adil *et al.* 2014, 2019).

The variation in the primitive knowledge towards preliminary understanding pertaining to the disease management and medical screening methods of various gynaecological cancers have not been functionally identified. The need for awareness about the parameters leading to gynaecological cancer will pave the way to early diagnosis and ultimately save millions of lives. This exploratory, descriptive, cross-sectional survey is to understand the awareness, knowledge and perseverance towards disease management towards cervical cancer among technical and medical fields associated with female students in universities. Our study aims to examine and compare the female technical and medical field associated with students' awareness and perspectives on gynaecological cancer.

3.Materials and methods

The current study was initiated and data analysis was conducted in Saveetha school of Engineering with concern form from every participants. Descriptive, online, self-administered survey questionnaires were circulated among female students of colleges in Chennai, pondicherry and Kanchipuram regions. The information was collected from the responses given by students regarding cervical cancer. Survey collected data based on viewpoint, attitude, or action held on a given topic by a group of individuals. The sample size was calculated using a sample size calculator for incidence values reported in the cited base paper (Kashyap et al. 2019)). The calculated sample size was found to be 34 which we felt was very low for a survey-based study. Hence keeping the base paper as a reference we increased the overall sample size to 300. Group 1 had 190 responses from technical students and group 2 had 110 responses for medical field-associated students. The sample size was calculated by maintaining G-power 80%, α =0.05, and confidence interval 95% (clinical.com/samplesize.aspn; (Kashyap et al. 2019).

A self-administered questionnaire was developed using previously published papers. (Chaka et al. 2018). It was a questionnaire that has been deliberately designed to be answered by a respondent without the data collection involvement of the researchers and was a cost-effective way to easily gather vast quantities of information in a relatively brief period from a large number of participants. A total of 300 female students participated in this survey and the information was collected from the responses of each individual for data analysis. Participants were female students from different departments of the university. Group 1 students were from technical universities and group 2 students were from medical universities. The link for the questionnaire was shared with students online and the responses were recorded. All the data collected from the responses were entered into Microsoft excel. The data were analyzed using descriptive statistics to evaluate the participant's demographic data and responses.

Statistical Analysis:

The statistical software used to analyze the data was SPSS version 21. The dependent variables in our study were the risk factors and the type of educational universities under survey. A Chi-square test was performed to predict the association between the outlined variables.

Results:

Cervical cancer:

Table 1 represents the distribution of age among female students in universities between the ages of 13 to 38. A total of 300 participants responded. 85.8% of the respondents were in their 20s. Fig. 1 represents the distribution of age among females and students in universities. The respondent ranged from 13-20 (12.6%), 21-28 (85.8%) and 29-38 (1.6%) age groups. Table 2 suggests a comparison between the awareness responses given by both technical students and medical field-associated students in universities. This table showed technical students contributed to 62.8% and medical field associated students contributed to 37.2%. The contribution of technical students is high compared to medical field associate students. Fig. 2 represents the comparison of respondents between the technical students and the medical field associated students. A maximum number of students were from technical institutes (62.8%).

Table 3 depicts the list of questions used in the survey related to experience and knowledge on cervical cancer among female students in universities. The viral nature of cervical cancer was very evident to most of the participants (59.5%). Table 4, 4a represents the knowledge on the hereditary transmission of cervical cancer between technical and medical associated students. 63.1% of the student population was well aware of this fact. Table 5, 5a depicts the knowledge of students towards symptoms and risk factors associated with cervical cancer. Human papillomavirus being the causative agent got the maximum responses (37.6%). For risk factors smoking bagged the maximum responses (35.1%). Table. 6, 6a represents the comparison between the branch of education and the knowledge on risk factors of cervical cancer.

chart comparison between the branch and the risk factors of cervical cancer. Smoking was found to be the highest risk factor as per technical students (70%), whereas medical associates claim all the risk factors have an almost equal share in causing cancer.

Table 7 suggests the comparison of branch and family history. There is an insignificant difference between the data. Fig 4, 4a is a bar chart that represents the comparison between the branch and family history of cervical cancer (P value was statistically insignificant). Technical students had more knowledge on family history when compared to medical associated students (140 responses). Tables 8, 8a suggest the relationship between branch and knowledge on screening. The bar chart in Fig. 5 represents the relation between branch and knowledge of screening are significantly different. Technical students had more awareness of the same when compared to their counterparts.

In Table 9, 9a the knowledge on the study branch and the prevention methods on cervical cancer is represented. Fig. 6 represents the comparison between the branch and knowledge on cervical cancer prevention. This data was statistically insignificant. Here too technical students seemed to have more awareness of the prevention measures that need to have opted for cervical cancer.

Ovarian cancer:

Table 1 represents the distribution of age among female students in universities between the ages of 13 to 38. A total of 300 participants responded. 85.8% of the respondents were in their 20s. Fig. 1 represents the distribution of age among females and students in universities. The respondent ranged from 13-20 (12.6%), 21-28 (85.8%) and 29-38 (1.6%) age groups. Table 2 suggests a comparison between the awareness responses given by both technical students and medical field-associated students in universities.

This Table 2 showed technical students contributed to 62.8% and medical field associated students contributed to 37.2%. The contribution of technical students is high compared to medical field associate students. Figure 2 represents the comparison of respondents between the technical students and the medical field associated students. A maximum number of students were from technical institutes (62.8%). Table 3 depicts the list of questions used in the survey related to experience and knowledge on ovarian cancer among female students in universities. The viral nature of ovarian cancer was very evident to most of the participants (60.6%).

Table 4 represents the knowledge on ovarian cancer between the technical and medical associated students. 41.4% of the student population was well aware of this fact. Table 5a and 5b depicts the knowledge of students towards symptoms and risk factors associated with ovarian cancer. Figure 3 represents a bar chart comparison between the branch and the risk factors of ovarian cancer. Table 6a and 6b represents the comparison of branch and knowledge on ovarian cysts. Figure 4 represents a bar chart comparison between the branch and knowledge on ovarian cysts. Technical students have more knowledge compared to medical-associated students.

Uterine cancer

Table 1 represents the distribution of age among female students in universities between the ages of 13 to 38. A total of 300 participants responded. 85.8% of the respondents were in their 20s. Figure 1 represents the distribution of age among females and students in universities. The respondent ranged from 13-20 (12.6%), 21-28 (85.8%) and 29-38 (1.6%) age groups. Table 2 suggests a comparison between the awareness responses given by both technical students and medical field associated students in universities. This table showed technical students contributed to 62.8% and medical field associated students contributed to 37.2%. The contribution of technical students is high compared to medical field associate students. Figure 2 represents the comparison of respondents between the technical students and the medical field associated students. A maximum number of students were from technical institutes (62.8%).

Table 3 depicts the list of questions used in the survey related to experience and knowledge on uterine cancer among female students in universities. Table 4 represents the knowledge on uterine cancer between the technical and medical associated students. 37.8% of the student population was well aware of this fact. Table 5a, 5b depict the knowledge of students towards symptoms associated with uterine cancer. Figure 3 represents a bar chart comparison between the technical and medical associated with the symptoms of uterine cancer. Table 6a, 6b represents the comparison of technical and medical knowledge associated with knowledge on uterine cancer diagnosis. Figure 4 represents a bar chart comparison between the technical and medical associated with uterine cancer diagnosis. Table 7a, 7b depict the knowledge of students towards detection by pap test associated with uterine cancer. Figure 5 represents a bar chart comparison between the technical and medical associated with the knowledge of uterine cancer detection by pap test. Technical students have more knowledge compared to medical field associated students.

Vaginal Cancer

Table 1 represents the distribution of age among female students in universities between the ages of 13 to 38. A total of 300 participants responded. 85.8% of the respondents seemed to be in their 20s. Figure 1 represents the distribution of age among females and students in universities. The respondent ranged from 13-20 (12.6%), 21-28 (85.8%) and 29-38 (1.6%) age groups. Table 2 suggests a comparison between the awareness responses given by both technical students and medical field-associated students in universities. This showed technical students seemed to contribute 62.8% of the total responses and medical field associated students. Figure 2 represents the comparison of respondents between the technical students. Figure 2 represents the comparison of respondents between the technical students and the medical field associated students. A maximum number of students seemed to be from technical institutes (62.8%).

Table 3 depicts the list of questions used in the survey related to experience and risk factors of vaginal cancer among female students in universities. Table 4 represents the knowledge on

vaginal cancer between the technical and medical associated students. 65.2% of the student population seemed to be well aware of this fact. Table 5a and Table 5b depicts the knowledge of students towards risk factors associated with vaginal cancer. Figure 3 represents a bar chart comparison between the technical and medical associated with risk factors of vaginal cancer. Table 6a and Table 6b represent the comparison of technical and medical knowledge associated with knowledge on vaginal cancer. Figure 4 represents a bar chart comparison between the technical and medical associated with knowledge on vaginal cancer. Technical students seemed to have more knowledge compared to medical-associated students.

3. Discussion

Cervical cancer

Our study suggests the awareness and knowledge, specifically for cervical cancer among women medical associated students, was found to be extremely poor. Most of the study was found to be statistically insignificant except for the responses for awareness on risk factors. Women with secondary and tertiary levels of education were more likely to have heard of cervical cancer (Mitiku and Tefera 2016); (Getahun et al. 2013); (Woldeamanuel, Girma, and Teklu 2013); (Mitiku and Tefera 2016). Students associated with patients with malignant metastatic diseases were more likely to know about the disease (Hailu and Mariam 2013). The Chi-square test and P-value of technical and medical field associated students were accustomed to ascertain the significant relationship between the variables. The technical students showed statistical insignificance with the knowledge on various gynecological cancers like cervical cancer compared with medical field-associated students. The medical field-associated women (37.2%) were found to have retarded awareness of cervical cancer even though they had exposure to the disease through the course of their education. On the contrary technical female students had better awareness of cervical cancer and on early prevention and treatment of the same (62.8%). This has been depicted in Fig. 2 Such awareness of problems would offer new perspectives on the topic such as medical screening. This helped us to quantify the effect of our observation on the general community we were studying, as well as the shifts in the beliefs, perceptions, and activities of our respondents over time.

The previous studies showed that the frameworks regarding the particular knowledge-based awareness and its determinants among people indicated various parameters and factors that contribute to the high morbidity and mortality rates of cervical cancer among women (Chaka et al. 2018). The research conducted in 2013 on awareness, risk factors, background knowledge, and screening programs on cervical cancer suggested regular training towards the exposure of disease is required in the management of the disease (Viens et al. 2017); (Hailu and Mariam 2013). This study was planned to determine the level of concern among university students about gynecological cancers (Ng'ang'a et al. 2018). We focused primarily on views of the triggers of gynecological cancer, adverse outcomes associated with gynecological cancer, and understanding of methods of gynecological review (Kasting et al. 2017). Since most of the studies favor the efficiency and efficacy of survey-based study on

cervical cancer awareness and prognosis, hence we were unable to cite a negative article on the same.

Ovarian cancer

The technical students showed statistical insignificance with the knowledge on various gynecological cancers like ovarian cancer compared with medical field associated students. The medical field-associated women (37.2%) were found to have retarded awareness of ovarian cancer even though they had exposure to the disease through the course of their education. On the contrary technical female students had better awareness of ovarian cancer and on early prevention and treatment of the same (62.8%). Such awareness of problems would offer new perspectives on the topic such as risk factors. This helped us quantify the effect of our observation on the general community we were studying and the shifts in the beliefs, perceptions, and activities of our respondents over time. This study suggests the awareness and knowledge of ovarian cancer among women technical and medical associated students. This study was found to be statistically insignificant. The risk of developing ovarian cancer increases with age, yet poor knowledge and absence of concern about ovarian cancer may mean that symptoms experienced by older women are attributed to other causes such as the menopause or aging process, rather than recognized as the potential threat to health (Ramirez et al. 2019). Improving women's confidence may be necessary to bridge the gap between ovarian cancer symptom awareness and earlier presentation, for example by providing an explicit action plan that describes how and when to act on potential ovarian symptoms (Diaz-Padilla 2013). The chi-square test and P-value of technical and female associated students were accustomed to ascertain the significant relationship between variables.

This study shows that the frameworks regarding the particular knowledge-based awareness and its determinants among people indicated various parameters and factors. The relationship between cancer symptom awareness and actual presentation would ideally be tested in large-scale prospective studies (Andersen et al. 2009; Freij et al. 2018). Comparison with women at increased risk due to a family history of ovarian cancer would help to illuminate the role of emotions in appraising and acting on ovarian symptoms (Brain et al. 2014; Sapkota, and Abhyankar 2019). Most of the studies favor the efficiency and efficacy of survey-based analysis on ovarian cancer towards its awareness and disease prognosis. Uterine cancer

The chi-square test and P-value of technical and female associated students were accustomed to ascertain the significant relationship between variables. The technical students showed statistical insignificance with the knowledge on various gynecological cancers like uterine cancer compared with medical field associated students. The medical field-associated women (37.2%) were found to have retarded awareness of uterine cancer even though they had exposure to the disease through the course of their education. On the contrary technical female students had better awareness of uterine cancer and on early prevention and treatment of the same (62.8%). Such awareness of problems would offer new perspectives on the topic such as risk factors. This helped us quantify the effect of the observation on the general

community. The shifts in the beliefs, perceptions, and activities of the respondents over time were analysed. This study was found to be statistically insignificant. It demonstrates the risk of uterine cancer in women with PCOS in a national population-based cohort study (Colafranceschi *et al.* 2019).

Women with PCOS have several risk factors for uterine cancer including chronic anovulation, obesity, and hyperinsulinemia, and therefore may be at increased risk of developing uterine cancer (Shafiee et al. 2020). Endometrial cancer is the most common type of uterine cancer, and studies have shown that most cases of endometrial cancer occur between the ages of 60 and 70 years (Jick, et al 2008). This study shows that the frameworks regarding the particular knowledge-based awareness and its determinants among people indicated various parameters and factors. Previous studies have demonstrated that obesity is associated with earlier age at diagnosis of endometrial cancers (Al-Wahab et al. 2011). The risk factor for uterine cancer because fat tissues tend to produce higher levels of estrogen (Nevadunsky et al. 2014). The young age of onset of these patients' uterine cancer highlights the need for additional study to better understand PCOS and to determine what uterine cancer screening and preventive strategies are needed (Pierpoint et al. 2011). The association between dysregulated thyroid hormone function and cancer risk is inconclusive, especially among different age groups and uncommon malignancies (Krashin et al. 2021). Since, most of the consensus supported the benefits of survey based study on diagnosis and health care, hence no negative citations were provided for the same.

Vaginal cancer

The medical field-associated women (37.2%) seemed to have retarded awareness vaginal cancer even though they had exposure to the disease through the course of their education. On the contrary, technical female students appeared to have better awareness of vaginal cancer and on early prevention and treatment of the same (62.8%). Maximum respondents seemed to be from the age group of 21-28 (85.8%). 65.2% of the student population appears to be well aware of the knowledge on vaginal cancer. The statistical value by chi-square analysis appears to be statistically insignificant between the datasets. The significance value is P=0.807.

Such awareness of problems would offer new perspectives on the topic such as risk factors. This helped us quantify the effect of our observation on the general community we were studying and the shifts in the beliefs, perceptions, and activities of our respondents over time. The chi-square test and P-value of technical and female associated students were accustomed to ascertain the significant relationship between variables. The technical students showed statistical insignificance with the knowledge on various gynecological cancers like vaginal cancer compared with medical field associated students This study suggests the awareness, attitude and innovative knowledge on vaginal cancer among women technical as well as medical field associated students. This study of the risk factors is found to be statistically significant. Vaginal cancer is not a common gynecological cancer. Some report rising trends especially in women beyond 75 (Daling *et al.* 2002). The known risk factors for vaginal

cancer, particularly the prevalence of oncogenic HPV infection (Khan *et al.* 2005). Concerning clinical characteristics, the majority of vaginal cancer cases are Stage 1 and have squamous cell histology as has been previously described (Khan *et al.* 2005; Creasman *et al.* 2015). This study shows that the frameworks regarding the particular knowledge-based awareness and its determinants among people indicated various parameters and factors. Vaginal cancer has often been treated similarly to cervical cancer (Henson and Tarone 2018). They partially contain the same epithelium, are embryologically similar, and share many of the same exposures as risk factors (Davis *et al.* 2013). However, there is a dearth of data on the population-based level on the impact of concurrent chemo-radiation in women with vaginal cancer (Grigsby 2019). Most of the studies seem to favor the efficiency and efficacy of survey-based analysis on awareness and attitude of vaginal cancer. Hence a negative consensus on the same is not cited.

Participants of the study had different attitudes and less experience towards the early examination of vaginal cancer. The social stigma is a primary factor among women, resulting in lack of medical examination due to the feminine social stigma towards vaginal cancer and associated questions in the survey. The analysis provides useful information based on vaginal cancers perseverance.

Tables and Figures for cervical cancer

Table 1: Distribution of age among females and students in universities between the ages of 13 to 38. A total of 300 participants responded. This table shows the age group of females.

AGE	FREQUENCY	PERCENTAGE
13-20	40	12.6
21-28	258	85.8
29-38	5	1.6

Table 2: Comparison between both technical students and medical field associate students in universities. This table shows technical students contribute 62.8% and medical field

associated students contribute 37.2%. The contribution of technical students is high compared to medical field associate students.

BRANCH	FREQUENCY	PERCENTAGE
Technical	190	62.8
Medical associates	110	37.2
Total	300	100

VARIABLE	Percentage of population who are aware (%)	Percentage of population who are not aware (%)
Is cervical cancer caused by a virus	175(59.5%)	119(40.5%)
Is cervical cancer can occur at any age even in childhood	158(53.6%)	137(46.5%)
Have you be screened for cervical cancer	154(52.4%)	140(47.6%)
Is cervical cancer preventable	154(51.8%)	135(45.9%)

Table 3 : List of questions of the survey related to experience and knowledge of cervical
cancer among female students in universities.

Table 4: This table represents the knowledge on the family history between technical and medical associated students and cervical cancer.

Variable	Percentage of population who are aware (%)	Percentage of population who are not aware (%)
Family history of cervical cancer	188(63.1%)	77(25.8%)
Have you ever heard of cervical cancer	77(25.9%)	220(74.1%)

Table 5: Knowledge of cervical cancer and symptoms and risk factors of cervical cancer among participants. It is determined in frequency and percentage.

VARIABLE	FREQUENCY	PERCENTAGE
----------	-----------	------------

The common cause of cervical cancer: 1.HPV	111	37.6
2.Radiation exposure 3.Pollution	99 58	33.6 19.7
4. Using intravenous drugs	27	9.2
Risk factors for developing cervical cancer 1.Smoking		
2.weakened immune system	104	35.1
3.family history of cervical cancer	95	32.1
4.All the above	45	14.5
	54	18.2

1 401	Table 0. Represents the comparison between branch and fisk factors of cervical cancer.					
Variable						
			Risk Factors Of Ce	ervical Cance	er	
			Weakened immune	Family	All of the	
		Smoking	system	history	above	Total
Branch	Technical	71	66	30	23	190
	Medical	33	29	13	35	110
	associates					
Total		104	95	43	58	300

	Table 6: R	Represents the	comparison	between	branch an	nd risk	factors o	f cervical	cancer
--	------------	----------------	------------	---------	-----------	---------	-----------	------------	--------

Table 6a: Represents the statistical value by chi square analysis for comparison between branch and risk factors of cervical cancer and the P-value is statistically significant. (P<0.01).

	Value	df	Asymptotic significance (2-sided)
Pearson chi-square	17.403	3	<.001
Likelihood Ratio	16.825	3	<.001
Linear-by-Linear Association	10.354	1	0.001
N of valid Cases	300		

Table 7: Represents the comparison between branch and family history of cervical cancer.The chi-square result is statistically insignificant. (P>0.05)

	Count						
Family History							
		Aware	Not aware	Total			
Branch	Technical	52	138	190			
	Medical field associated	40	70	110			
	Total	92	208	300			

Table 7a: Represents the statistical value by chi square analysis by comparison between branch and family history of cervical cancer.

	Value	df	Asymptotic significance (2-sided)	Exact Sig (2- 2- sided)	Exact sig (1- Sided)
Pearson chi-square	2.651	1	0.130		
Continuity correction	2.245	1	0.134		
Likelihood Ratio	2.621	1	0.105		
Fisher's Exact Test				0.119	0.068
Linear-by-Linear Association	2.642	1	0.104		
N of valid Cases	300				

Table 8: This table shows the relationship between branch and knowledge on screening(P>0.05)

Count				
		Knowled	ge Screening	
		Agree	Disagree	Total
Branch	Technical	110	80	190
	Medical associated	48	62	110
	Total	158	142	300

Table 8a: Represents	the statistical value by chi square analysis for relationship between
	branch and knowledge on screening

	Value	df	Asymptotic significance (2-sided)	Exact Sig (2- 2- sided)	Exact sig (1- Sided)
Pearson chi-square	5.681	1	0.017		
Continuity correction	5.124	1	0.024		
Likelihood Ratio	5.690	1	0.017		
Fisher's Exact Test				0.022	0.012
Linear-by-Linear Association	5.663	1	0.017		
N of valid Cases	300				

Table 9: Represents the comparison between a branch and cervical cancer prevention(P>0.05)

		Count		
		cervical cancer	prevention knowledge	
		Agree	Dis agree	Total
Branch	Technical	102	86	188
	Medical associated	52	58	110
	Total	154	144	298

Table 9a: Represents the statistical value by chi square analysis by comparison between a branch and cervical cancer prevention

	Value	df	Asymptotic significance (2-sided)	Exact Sig (2-2- sidedd)	Exact sig (1- Sided)
Pearson chi-square	1.355	1	0.244		
Continuity correction	1.090	1	0.297		
Likelihood Ratio	1.355	1	0.244		
Fisher's Exact Test				0.280	0.148
Linear-by-Linear Association	1.350	1	0.245		
N of valid Cases	299				

Fig. 1: Represents the distribution of age among females and students in universities. 13-20 age grp (12.6%), 21-28 (85.8%) and 29-38 (1.6%). The X axis represents the variable count and Y axis represents the age frequency ±1 SD

Fig. 2: Represents the comparison of respondents between the technical students and the medical field associated students X axis represents count and Y axis represents Branch of the study ± 1 SD

Fig. 3: Bar chart represents the comparison between the branch and the risk factors of cervical cancer (P<0.01 chi-square analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Fig. 4: Bar chart represents the comparison between the branch and family history of cervical cancer (P>0.05 chi-square analysis is statistically insignificant). The deviation shows

technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count \pm 1SD.

Fig. 5: This bar chart represents the relation between branch and knowledge of screening are significantly different. (P>0.05 chi-square analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1SD.

Fig. 6: Bar chart represents the comparison between the branch and knowledge on cervical cancer prevention. This data is statistically insignificant. (P>0.05 chi-square analysis). The deviation shows technical students have more knowledge than medical associated students.

X-axis technical vs medical associated students Y-axis count \pm 1SD.

Table 1 Distribution of age among females and students in universities between the ages of13 to 38. A total of 300 participants responded.

AGE	FREQUENCY	PERCENTAGE
13-20	40	12.6
21-28	258	85.8
29-38	5	1.6

Table 2 Comparison between both technical students and medical field associate students in universities.

DRANCH FREQUENCI PERCENTAG	BRANCH FR	REQUENCY	PERCENTAGE
----------------------------	-----------	----------	------------

Annals of R.S.C.B., Vol. 24, Issue 1, 2020, pp. 649- 695 Received 18April2020; accepted 23June2020

Technical	190	62.8
Medical field associated	110	37.2
Total	300	100

Table 3 Depicts the list of questions used in the survey related to experience and knowledgeon ovarian cancer among female students in universities. The virulence of ovarian cancer wasvery evident to most of the participants (60.6%).

	Percentage of population who are	Percentage of population who are not
VARIABLE	aware(%)	aware (%)
Women who typically experience symptoms of ovarian cancer are	176 (600())	117 (20.00/)
diagnosed late	1/6 (60%)	117 (39.9%)
The majority of ovarian cancer diagnosed late	173 (58.9%)	121 (41.2%)
Ovarian cancer can occur at any age, even in childhood	160 (55%)	131 (45%)
Some early symptoms of ovarian cancer may be recognized	177 (60.6%)	115 (39.4%)
Most ovarian cysts are cancerous	152 (52.3%)	139 (47.7%)
Students have shown an approximate 40% reduction in mortality screening for ovarian cancer	186 (63.7%)	106 (36.3%)
Genes are responsible for some cases of ovarian cancer	174 (59.4%)	119 (40.6%)

Table 4 Represents the knowledge on ovarian cancer between the technical and medical associated students. 41.4% of the student population was well aware of this fact.

VARIABLE	FREQUENCY	PERCENTAGE
Where does ovarian cancer can occur	55	18.7%
1.on tissue within the ovary		
2.on the surface of the ovary	92	31.3%
3.in egg forming germ cell within the ovary		
4.any of the above	93	31.6%
	54	18.4%
Risk for developing ovarian cancer		
1.women who had multiple children	65	22.3%
2.women who are underweight	99	33.9%
3.women over the age of 30	70	24%
4.any of the above	58	19.9%
In how many stages ovarian cancer is classified		
depending upon the extent of spread		
1.2	77	26.5%
2.3	120	41.2%
3.4	73	25.1%
4.5	21	7.2%
Usually, the first treatment for ovarian cancer is		
1.surgery	53	18%
2.chemotherapy	119	40.5%
3.radiation	75	25.5%
4.any of the above	45	16%
Risk factors for ovarian cancer		
1.young age	55	18.8%
2.null parity	99	33.9%
3.multiple pregnancies	96	32.9%
4.use of oral pills	42	14.4%
Symptoms uncommon in ovarian cancer		
1.abdominal pain	96	32.8%
2.chest pain	123	42%
3.weight loss	54	18.4%
4.abdominal digestion	20	6.8%

Staging of ovarian cancer		
1.stage 3 disease	120	41.4%
2.stage 1 tumors	134	46.2%
3.stage 4 disease	36	12.4%
In metastatic epithelial ovarian cancer		
1.ascites		
2.bowel obstruction	62	21.3%
3.opioid analgesics	184	63.2%
4.lymphedema	28	9.6%
	15	21.3%
The most type of ovarian cancer		
1.epithelial tumor	50	17.2%
2.germ cell tumor	81	27.8%
3.sex chord tumor	106	36.4%
4.Kruckenberg cancer	54	18.6%
Out of 100 women, how many will probably develop		
ovarian cancer	38	13.1%
1.2	108	37.2%
2.5	116	40%
3.10	28	9.7%
4.22		

Table 5a Represents the comparison betw	veen branch and risk factors of ovarian cancer.
---	---

Count		
	Risk Factors Of Ovarian Cancer	Total

		Young age	Null parity	Multiple pregnancies	prolonged use of oral contraceptive pills	
Branch	Technical	40	64	62	23	189
	Medical field associated	22	35	34	19	110
	Total	62	99	96	42	299

Table 5b Represents the statistical value by chi-square analysis for comparison betweenbranch and risk factors of ovarian cancer and the P-value is statistically insignificant.(P>0.05).

	Chi-Square Tests				
	Value	df	Asymptotic Significance (2-sided)		
Chi	1.500a	3	0.682		
hood	1.468	3	0.69		
inear	0.666	1	0.415		
7alid	299				
a. 0 cells (0.0%) have an expected count of less than 5. The minimum expected count is 15.45.					

Table 6a Represents the comparison between branch and knowledge on ovarian cysts.

Count				
		Attitude towards Ovarian Cysts		
Agree Disagree			Total	
Branch	Technical	94	96	190
	Medical field associated	58	52	110
Total		152	148	300

	Chi-Square Tests					
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Sig. (1-	
]	.295a	1	0.587			
	0.179	1	0.672			
)(0.295	1	0.587			
£				0.632	0.336	
e	0.294	1	0.588			
1	300					
	a. 0 cells (0.0%) have an expected count of less than 5. The minimum expected count is 54.27.					
	b. Computed only for a 2x2 table					

Table 6b Represents the statistical value by chi-square analysis for comparison between branch and knowledge on ovarian cysts and the P-value is statistically insignificant. (P>0.05).

Fig. 1 Represents the distribution of age among females and students in universities. 13-20 age grp (12.6%), 21-28 (85.8%) and 29-38 (1.6%). The X-axis represents the variable count and the Y-axis represents the age frequency ±1 SD

Fig. 2 Represents the comparison of respondents between the technical students and the medical field associated students X-axis represents count and Y-axis represents Branch of the study ± 1 SD

Fig. 3 Bar chart represents the comparison between the branch and the risk factors of ovarian cancer (P>0.05 chi-square analysis). The deviation shows technical students have more

knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Fig. 4 Bar chart represents the comparison between the branch and knowledge on ovarian cysts (P>0.05 chi-square analysis is statistically insignificant). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count \pm 1SD.

Tables and Figures for uterine cancer

Table 1: Distribution of age among females and students in universities between the ages of 13 to 38. A total of 300 participants responded. This table shows the age group of females.

	AGE	FREQUENCY	PERCENTAGE
	13-20	40	12.6
,	21-28	258	85.8

29-38	5	1.6
-------	---	-----

Table 2: Comparison between both technical students and medical field associate students in universities. This table shows technical students contribute 62.8% and medical field-associated students contribute 37.2%. The contribution of technical students is high compared to medical field associate students.

BRANCH	FREQUENCY	PERCENTAGE
Technical	190	62.8
Medical associates	110	37.2
Total	300	100

Table 3: The list of questions used in the survey related to experience and knowledge on uterine cancer among female students in universities.

VARIABLE	The population who are aware (%)	The population who are not aware (%)
Uterine cancer that forms in the inner lining of a uterus is considered endometrial cancer	164(56.4%)	127(43.6%)
Is obesity increasing the risk for cancer of the uterus	145(50.2%)	144(49.8%)
Is uterus cancer detected by a pap test	129(44.5%)	161(55.5%)
Is uterine cancer treatment affect the ability to conceive	119(41%)	171(59%)
Is endometrial cancer is twice as common in overweight	172(59.1%)	119(40.9%)
Is chemotherapy treatment uses anti-cancer drugs targeted to a specific location	194(66.7%)	97(33.3%)

Is staging used to determine the severity or extent of the cancer	102(35.1%)	189(64.9%)
Most chemotherapy treatments are done in repeated cycles of drug administration followed by a rest period	188(64.9%)	102(35.2%)
Hormone therapy is not used on uterine cancer cells that require another hormone for growth	180(62.5%)	108(37.5%)
Is endometrial cancer is a disease in which malignant cells form in the tissues of the endometrium	124(42.6%)	167(57.4%)
Is endometrial cancer diagnosed early	132(45.4%)	159(54.6%)

Table 4: The knowledge on uterine cancer between the technical and medical associatedstudents. 37.8% of the student population was well aware of this fact.

VARIABLE	FREQUENC	PERCENTAG
	Y	Е
How can reduce the cancer of the uterus	36	12.5%
1.maintaining a healthy weight		
2.taking birth control pills	87	30.1%
3.monitoring blood sugar levels		
4.all of the above	106	36.7%
	60	20.8%
How is uterus cancer diagnosed		
1.pelvic examination	33	11.3%
2.biopsy	69	23.6%
3.CT scan	104	29.5%
4.all of the above	33	35.6%

The common surgical procedures to treat uterine cancer		
1.hysterectomy	37	12.7%
2.radial hysterectomy	88	30.1%
3.lymphadenectomy	90	30.8%
4.all the above	77	26.4%
The common signs and symptoms of uterine cancer are		
1 abdominal bleeding	11	15 106
2 vaginal discharge	44 87	13.1% 20.0%
2. vaginai discharge	85	29.9%
5.pervic pairs	85 75	29.270
4.411 the above	15	23.870
Exposure of endometrial tissue to estrogen made by the		
body may be caused by		
1.never giving birth		
2.menstruating early stage	50	17.2%
3.menopause at a later stage	94	32.4%
4.all the above	85	29.3%
	61	21%
Risk factors for endometrial cancer		
1.obesity	36	12.4%
2.metabolic syndrome	88	30.2%
3.type 2 diabetes	71	24.4%
4.all the above	96	33%
What are the following stages are used for endometrial		
cancer	40	13.7%
1 stage 1 2	91	31.3%
2 stage 3.4	110	37.8%
3 both of them	50	17.2%
4 none of the above	50	17.270
Endometrial cancer may be grouped for treatment as	42	1470/
	43	14.7%
	118	40.4%
	100	34.2%
3.both of them	51	10.6%
4.none of the above		
The symptoms of endometriosis may include		
1.pelvic pain	29	10%
2.painful intercourse	98	33.7%
3.infertility	102	35.1%
4.all the above	62	21.3%

cancer.							
Variable							
Symptoms Of Uterine Cancer							
Vaginal dischargeAbdominal vaginal bleedingpelvicAll the above						Total	
Branch	Technical	59	29	60	41	189	
	Medical field associated	28	15	25	41	109	
	Total 87 44 85 82					298	

 Table 5a: Comparison between technical and medical associated with risk factors of uterine

 cancer

Table 5b: The statistical value by chi-square analysis for comparison between Technical and medical field associated students towards risk factors of uterine cancer and the P-value is statistically significant. (P<0.05).

Chi-Square Tests					
	Value	df	: Significanc		
Pearson Chi-Square	9.091a	3	0.028		
Likelihood Ratio	8.933	3	0.03		
Linear-by-Linear Association	4.066	1	0.044		
N of Valid Cases	298				
a. 0 cells (0.0%) have an expected count of less than 5. Th	e minimum ex	pecte	d count is		
16.09.					

Table 6a: Comparison between technical and medical-associated towards knowledge on uterine cancer diagnosis.

Variable								
		Knowledgeonuteruscancerdiagnoised						
		Pelvic CT All of the						
		Biopsy examination scan above Tot						
Branch	Technical	49	19	54	68	190		
	Medical field	28	14	32	36	110		
	associated							
Total 77 33 86 104						300		

Table 6b: The statistical value by chi-square analysis for comparison between technical and medical associated knowledge on uterine cancer diagnosed and the P-value is statistically insignificant.

Chi-Square Tests			
	Value	df	c Significanc
Pearson Chi-Square	.673a	3	0.879
Likelihood Ratio	0.666	3	0.881
Linear-by-Linear Association	0.129	1	0.719
N of Valid Cases	300		
a. 0 cells (0.0%) have an expected count of less than 5. The 12.10.	minimum ex	pecte	d count is

 Table 7a: Comparison between technical and medical field associated students with knowledge on uterine cancer detection by pap test.

		Variable			
		knowledge on ute	knowledge on uterus cancer detection by a pap test		
Aware Not Aware				Total	
Branch	Technical	90	100	190	
	Medical field associated	49	61	110	
	Total	139	161	300	

Table 7b: The statistical value by chi-square analysis for comparison between Technical and medical associated towards knowledge on uterine cancer detection by pap test and the P-value is statistically insignificant.

Chi-Square Tests							
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	Sig. (1		
Pearson Chi-Square	.223a	1	0.637				
Continuity Correction	0.124	1	0.725				
Likelihood Ratio	0.223	1	0.636				
Fisher's Exact Test				0.719	0.363		

Annals of R.S.C.B., Vol. 24, Issue 1, 2020, pp. 649- 695 Received 18April2020; accepted 23June2020

Linear-by-Linear Association	0.223	1	0.637			
N of Valid Cases	300					
a. 0 cells (0.0%) have an expected count of less than 5. The minimum expected count is 50.97.						
b. Computed only for a 2x2 table						

Fig. 1. Distribution of age among females and students in universities. 13-20 age grp (12.6%), 21-28 (85.8%) and 29-38 (1.6%). The X-axis represents the variable count and the Y-axis represents the age frequency ±1 SD

Fig. 2. Comparison of respondents between the technical students and the medical field associated students X-axis represents count and Y-axis represents Branch of the study ± 1 SD

Error Bars: 95% CI

Fig. 3. Comparison between the branch and the symptoms of uterine cancer (chi-square analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Fig. 4. Comparison between the branch and the knowledge of uterine cancer diagnosed (P>0.05 chi-square analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Fig. 5. Comparison between the branch and the knowledge of uterine cancer detection by pap test (P>0.05 chi-square analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Tables and figures for vaginal cancer

Table 1. Distribution of age among females and students in universities between the ages of 13 to 38. A total of 300 participants responded. This table shows the age group of females.

AGE	FREQUENCY	PERCENTAGE
13-20	40	12.6
21-28	258	85.8
29-38	5	1.6

Table 2. Comparison between both technical students and medical field associate students in
universities. This table shows technical students contribute 62.8% and medical field-
associated students contribute 37.2%. The contribution of technical students is high compared
to medical field associate students.

Annals of R.S.C.B., Vol. 24, Issue 1, 2020, pp. 649- 695 Received 18April2020; accepted 23June2020

BRANCH	FREQUENCY	PERCENTAGE
Technical	190	62.8
Medical-associates	110	37.2
Total	300	100

Table 3. The list of questions used in the survey related to experience and knowledge on vaginal cancer among female technical and medical associated students in universities.

VARIABLE	FREQUENCY	PERCENTAGE
How many ways are there, that cancer spread in the body		
1.2	47	16.2%
2.3	100	34.4%
3.4	94	32.3%
4.5	50	17.2%
How many types of standard treatments are used		
1.2	66	22.7%
2.3	139	47.8%
3.4	66	22.7%
4.5	20	6.9%
Risk factors for vaginal cancer		
1.tobacco use	28	9.6%
2.sexual initiation	85	29.2%
3.HPV	78	34.4%
4.all the above	28	26.8%
How many types of grades are given to cancers to		
provide prognostic information about the tumor		
1.2		
2.3	78	26.9%
3.4	153	52.8%
4.5	42	14.5%
	17	5.9%

Table 4. The knowledge on vaginal cancer between the technical and medical associatedstudents. 65.2% of the student population was well aware of this fact.

VARIABLE	YES (%)	NO (%)
Is cancer travels through the blood vessels to the other parts of the body	143(49%)	149(51%)
Is a cancer tumor forms in the lymph vessels	201(68.8%)	91(31.2%)
For reducing risk, the combinations of contraceptive pills are used for the treatment or not	189(65.2%)	101(34.8%)
Is biopsy remains the gold standard to diagnose vaginal cancer	171(58.6%)	121(41.4%)
Is targeted molecular analysis confirms an overall rate of oncogenic mutations	167(57.4%)	124(42.6%)

 Table 5a. The comparison between technical and medical associated with risk factors of vaginal cancer.

Variables						
Count						
Risk factors of vaginal cancer						
Tobacco use Human papillomavirus			Total			
Branch	Technical	86	104	190		
	Medical field associated	27	83	110		
	Total	113	187	300		

Table 5b. The statistical value by chi-square analysis for comparison between technical and medical associated with risk factors of vaginal cancer and the P-value is statistically significant. (P<0.01).

Chi-Square Tests					
	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Pearson Chi-Square	12.736a	1	0		
Continuity Correction	11.869	1	0.001		
Likelihood Ratio	13.154	1	0		
Fisher's Exact Test				0	0
Linear-by-Linear Association	12.693	1	0		
N of Valid Cases	300				
a. 0 cells (0.0%) have an	expected	cou	unt of less than 5. The minimum 41.43.	expected count is	
	b. Com	put	ted only for a 2x2 table		

Table 6a. The comparison between technical and medical associated with knowledge on vaginal cancer.

Variables								
Count								
	on vaginal cancer							
		Aware	Not Aware	Total				
Branch	Technical	111	78	189				
	Medical field associated	67	43	110				
	Total	178	121	299				

Table 6b. The statistical value by chi-square analysis for comparison between technical and medical associated with knowledge on vaginal cancer and the P-value is statistically insignificant.

8							
Chi-Square Tests							
ValueAsymptotic Significance (2- sided)		Exact Sig. (2- sided)	Sig. (1				
Pearson Chi-Square	.137a	1	0.711				

Annals of R.S.C.B., Vol. 24, Issue 1, 2020, pp. 649- 695 Received 18April2020; accepted 23June2020

Continuity Correction	0.062	1	0.804			
Likelihood Ratio	0.137	1	0.711			
Fisher's Exact Test				0.807	0.403	
Linear-by-Linear Association	0.137	1	0.712			
N of Valid Cases	299					
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 44.52.						
b. Computed only for a 2x2 table						

Fig. 1. The distribution of age among females and students in universities. 13-20 age grp (12.6%), 21-28 (85.8%) and 29-38 (1.6%). The X axis represents the variable count and Y axis represents the age frequency ±1 SD.

Fig. 2. The comparison of respondents between the technical students and the medical field associated students X axis represents count and Y axis represents Branch of the study ± 1 SD.

Error Bars: 95% CI

Fig. 3. Comparison between the branch and the risk factors of vaginal cancer (P<0.01 chisquare analysis). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1 SD.

Fig. 4. Comparison between the branch and knowledge on ovarian cysts (P>0.05 chi-square analysis is statistically insignificant). The deviation shows technical students have more knowledge than medical associated students. X-axis technical vs medical associated students Y-axis count ± 1SD.

4. Conclusion

The study suggests the awareness and innovative knowledge, specifically for cervical cancer among women students, was found to be extremely low. Lack of cancer awareness with high feminine stigma towards gynecological cancers is the most potent barrier and should be addressed through multifaceted innovative strategies-based interventions. Comparative Innovative analysis of technical and medical field associated students' suggested Innovative parameters towards knowledge, awareness, perspective risk factors, and medical screening programs for gynecological cancer.

DECLARATIONS:

Conflict of interests

No conflict of interest in this manuscript.

Authors Contribution

Author RH was involved in data collection and manuscript writing. Author MAAA was involved in conceptualization, data validation, and critical review of the manuscript.

References

- Akkuzu, G., S. Talas, and B. Erdogan. 2012. "66 An Evaluation of the Functional Status of Women With a Diagnosis of Gynaecological Oncological Disease." *European Journal of Oncology Nursing*. https://doi.org/10.1016/s1462-3889(12)70080-7.
- 2. Aref-Adib, Mehrnoosh, and Theresa Freeman-Wang. 2014. "Human Papillomavirus and Cervical Cytology." *Recent Advances in Obstetrics and Gynaecology* 25. https://doi.org/10.5005/jp/books/12313_10.
- Chaka, Bekele, Abdul-Rauf Sayed, Bridgette Goeieman, and Sarah Rayne. 2018. "A Survey of Knowledge and Attitudes Relating to Cervical and Breast Cancer among Women in Ethiopia." *BMC Public Health*. https://doi.org/10.1186/s12889-018-5958-8.
- 4. Chandrasekar, Raghavan, Shyamala Chandrasekhar, K. K. Shantha Sundari, and Poornima Ravi. 2020. "Development and Validation of a Formula for Objective Assessment of Cervical Vertebral Bone Age." *Progress in Orthodontics* 21 (1): 38.
- 5. Efared, Boubacar, Ibrahim S. Sidibé, Fatimazahra Erregad, Nawal Hammas, Laila Chbani, and Hinde El Fatemi. 2019. "Extra-Uterine Low Grade Endometrioid Stromal Sarcoma Arising from Ovarian Endometriosis: A Case Report and Review of the Literature." *Gynecologic Oncology Research and Practice* 6 (January): 2.
- Ezhilarasan, Devaraj, Velluru S. Apoorva, and Nandhigam Ashok Vardhan. 2019. "Syzygium Cumini Extract Induced Reactive Oxygen Species-Mediated Apoptosis in Human Oral Squamous Carcinoma Cells." *Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology* 48 (2): 115–21.
- Getahun, Frehiwot, Fekadu Mazengia, Mulunesh Abuhay, and Zelalem Birhanu. 2013. "Comprehensive Knowledge about Cervical Cancer Is Low among Women in Northwest Ethiopia." *BMC Cancer* 13 (January): 2.
- Govindaraju, Lavanya, Ganesh Jeevanandan, and Emg Subramanian. 2017. "Clinical Evaluation of Quality of Obturation and Instrumentation Time Using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth." *Journal of Clinical and Diagnostic Research: JCDR* 11 (9): ZC55–58.
- Hailu, Alemayehu, and Damen Haile Mariam. 2013. "Patient Side Cost and Its Predictors for Cervical Cancer in Ethiopia: A Cross Sectional Hospital Based Study." *BMC Cancer*. https://doi.org/10.1186/1471-2407-13-69.
- 10. Janani, Krishnamachari, Ajitha Palanivelu, and Raghu Sandhya. 2020. "Diagnostic Accuracy of Dental Pulse Oximeter with Customized Sensor Holder, Thermal Test and Electric Pulp Test for the Evaluation of Pulp Vitality: An in Vivo Study." *Brazilian Dental Science* 23 (1). https://doi.org/10.14295/bds.2020.v23i1.1805.
- Jeevanandan, Ganesh. 2017. "Kedo-S Paediatric Rotary Files for Root Canal Preparation in Primary Teeth - Case Report." *Journal of Clinical and Diagnostic Research: JCDR* 11 (3): ZR03–05.

- Jose, Jerry, Ajitha, and Haripriya Subbaiyan. 2020. "Different Treatment Modalities Followed by Dental Practitioners for Ellis Class 2 Fracture – A Questionnaire-Based Survey." *The Open Dentistry Journal* 14 (1): 59–65.
- Kashyap, Nainakshi, Nadiya Krishnan, Sukhpal Kaur, and Sandhya Ghai. 2019. "Risk Factors of Cervical Cancer: A Case-Control Study." *Asia-Pacific Journal of Oncology Nursing* 6 (3): 308–14.
- Kasting, Monica L., Shannon Wilson, Terrell W. Zollinger, Brian E. Dixon, Nathan W. Stupiansky, and Gregory D. Zimet. 2017. "Differences in Cervical Cancer Screening Knowledge, Practices, and Beliefs: An Examination of Survey Responses." *Preventive Medicine Reports* 5 (March): 169–74.
- 15. Kumar, Dhinesh, and S. Delphine Priscilla Antony. 2018. "Calcified Canal and Negotiation-A Review." *Journal of Advanced Pharmaceutical Technology & Research* 11 (8): 3727.
- 16. Manikandan, Saranya, Subasish Behera, Nageswaraomadhulika Naidu, Vignesswary Angamuthu, Omarfarooq Burhanuddin Mohammed, and Abhitosh Debata. 2019. "Knowledge and Awareness toward Cervical Cancer Screening and Prevention among the Professional College Female Students." *Journal of Pharmacy And Bioallied Sciences*. https://doi.org/10.4103/jpbs.jpbs_21_19.
- 17. Marimuthu, Madhulaxmi, Manoharan Andiappan, Abdul Wahab, M. R. Muthusekhar, Anandan Balakrishnan, and Sambandham Shanmugam. 2018. "Canonical Wnt Pathway Gene Expression and Their Clinical Correlation in Oral Squamous Cell Carcinoma." *Indian Journal of Dental Research: Official Publication of Indian Society for Dental Research* 29 (3): 291–97.
- Mathew, Mebin George, S. R. Samuel, Ashu Jagdish Soni, and Korishettar Basavaraj Roopa. 2020. "Evaluation of Adhesion of Streptococcus Mutans, Plaque Accumulation on Zirconia and Stainless Steel Crowns, and Surrounding Gingival Inflammation in Primary Molars: Randomized Controlled Trial." *Clinical Oral Investigations*, 1–6.
- 19. McTiernan, Anne, Melinda Irwin, and Vivian VonGruenigen. 2010. "Weight, Physical Activity, Diet, and Prognosis in Breast and Gynecologic Cancers." *Journal of Clinical Oncology*. https://doi.org/10.1200/jco.2010.27.9752.
- 20. Mitiku, Israel, and Fasika Tefera. 2016. "Knowledge about Cervical Cancer and Associated Factors among 15-49 Year Old Women in Dessie Town, Northeast Ethiopia." *PloS One* 11 (9): e0163136.
- 21. Ng'ang'a, Anne, Mary Nyangasi, Nancy G. Nkonge, Eunice Gathitu, Joseph Kibachio, Peter Gichangi, Richard G. Wamai, and Catherine Kyobutungi. 2018.
 "Predictors of Cervical Cancer Screening among Kenyan Women: Results of a Nested Case-Control Study in a Nationally Representative Survey." *BMC Public Health* 18 (Suppl 3): 1221.
- 22. Nyengidiki, Tamunomie K. 2015. "Screening Methods for Gynaecological Cancers." *Contemporary Gynecologic Practice*. https://doi.org/10.5772/58947.
- 23. Patil, Sandeep B., D. Durairaj, G. Suresh Kumar, D. Karthikeyan, and D. Pradeep. 2017. "Comparison of Extended Nasolabial Flap Versus Buccal Fat Pad Graft in the

Surgical Management of Oral Submucous Fibrosis: A Prospective Pilot Study." *Journal of Maxillofacial and Oral Surgery* 16 (3): 312–21.

- 24. Pc, J., T. Marimuthu, and P. Devadoss. 2018. "Prevalence and Measurement of Anterior Loop of the Mandibular Canal Using CBCT: A Cross Sectional Study." *Clinical Implant Dentistry and Related Research*. https://europepmc.org/article/med/29624863.
- 25. Rajeshkumar, S., S. Venkat Kumar, Arunachalam Ramaiah, Happy Agarwal, T. Lakshmi, and Selvaraj Mohana Roopan. 2018. "Biosynthesis of Zinc Oxide Nanoparticles usingMangifera Indica Leaves and Evaluation of Their Antioxidant and Cytotoxic Properties in Lung Cancer (A549) Cells." *Enzyme and Microbial Technology* 117 (October): 91–95.
- 26. Ramadurai, Neeraja, Deepa Gurunathan, A. Victor Samuel, Emg Subramanian, and Steven J. L. Rodrigues. 2019. "Effectiveness of 2% Articaine as an Anesthetic Agent in Children: Randomized Controlled Trial." *Clinical Oral Investigations* 23 (9): 3543–50.
- Ramesh, Asha, Sheeja Varghese, Nadathur D. Jayakumar, and Sankari Malaiappan. 2018. "Comparative Estimation of Sulfiredoxin Levels between Chronic Periodontitis and Healthy Patients - A Case-Control Study." *Journal of Periodontology* 89 (10): 1241–48.
- Ramesh, Asha, Radha Vellayappan, Sheethalan Ravi, and Kaarthikeyan Gurumoorthy. 2019. "Esthetic Lip Repositioning: A Cosmetic Approach for Correction of Gummy Smile - A Case Series." *Journal of Indian Society of Periodontology* 23 (3): 290–94.
- 29. Ravinthar, Karishma, and Jayalakshmi. 2018. "Recent Advancements in Laminates and Veneers in Dentistry." *Journal of Advanced Pharmaceutical Technology & Research* 11 (2): 785.
- 30. Ravi, Sheethalan, Sankari Malaiappan, Sheeja Varghese, Nadathur D. Jayakumar, and Gopinath Prakasam. 2017. "Additive Effect of Plasma Rich in Growth Factors With Guided Tissue Regeneration in Treatment of Intrabony Defects in Patients With Chronic Periodontitis: A Split-Mouth Randomized Controlled Clinical Trial." *Journal* of Periodontology 88 (9): 839–45.
- 31. R, Hannah, R. Hannah, Pratibha Ramani, Arvind Ramanathan, Jancy Merlin R, S. Gheena, Abilasha Ramasubramanian, and K. Monika. 2020. "CYP2 C9 Polymorphism among Patients with Oral Squamous Cell Carcinoma and Its Role in Altering the Metabolism of Benzo[a]pyrene." Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. https://doi.org/10.1016/j.0000.2020.06.021.
- 32. Samuel, Srinivasan Raj. 2021. "Can 5-Year-Olds Sensibly Self-Report the Impact of Developmental Enamel Defects on Their Quality of Life?" International Journal of Paediatric Dentistry / the British Paedodontic Society [and] the International Association of Dentistry for Children 31 (2): 285–86.
- 33. Sridharan, Gokul, Pratibha Ramani, Sangeeta Patankar, and Rajagopalan Vijayaraghavan. 2019. "Evaluation of Salivary Metabolomics in Oral Leukoplakia and Oral Squamous Cell Carcinoma." *Journal of Oral Pathology & Medicine:*

Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 48 (4): 299–306.

- 34. Sweta, V. R., R. P. Abhinav, and Asha Ramesh. 2019. "Role of Virtual Reality in Pain Perception of Patients Following the Administration of Local Anesthesia." *Annals of Maxillofacial Surgery* 9 (1): 110–13.
- 35. Viens, Laura, Doug Perin, Virginia Senkomago, Antonio Neri, and Mona Saraiya. 2017. "Questions About Cervical and Breast Cancer Screening Knowledge, Practice, and Outcomes: A Review of Demographic and Health Surveys." *Journal of Women's Health* 26 (5): 403–12.
- 36. Vijayashree Priyadharsini, Jayaseelan. 2019. "In Silico Validation of the Non-Antibiotic Drugs Acetaminophen and Ibuprofen as Antibacterial Agents against Red Complex Pathogens." *Journal of Periodontology* 90 (12): 1441–48.
- 37. Vijayashree Priyadharsini, J., A. S. Smiline Girija, and A. Paramasivam. 2018. "In Silico Analysis of Virulence Genes in an Emerging Dental Pathogen A. Baumannii and Related Species." *Archives of Oral Biology* 94 (October): 93–98.
- 38. Woldeamanuel, Yohannes W., Belaineh Girma, and Alula M. Teklu. 2013. "Cancer in Ethiopia." *The Lancet Oncology*. https://doi.org/10.1016/s1470-2045(12)70399-6.
- 39. Differential expression of Helios, Neuropilin-1 and FoxP3 in head and neck squamous cell carcinoma (HNSCC) patients A.A.Mohamed Adil, Anil Kumar Bommanabonia, Anandraj Vaithy, Sateesh Kumar 3biotech 9 (178)
- 40. Protagonist of Immuno-Profiling, Immuno-Scoring, and Immunotherapy Towards Colitis-Associated Cancer: Systematic Review, Mohamed Adil a.a, AK Pandurangan, M Waseem, N Ahmed Diagnostic and Treatment Methods for Ulcerative Colitis and Colitis 2020
- 41. Emerging Role of Mitophagy in Inflammatory Diseases: Cellular and Molecular Episodes, Mohamed Adil AA, S Ameenudeen, A Kumar, S Hemalatha, N Ahmed, N Ali 2020 Curr Pharm Des. 2020;26(4):485-491. doi: 10.2174/1381612826666200107144810
- 42. Increased Expression of TGF-β and IFN-γ in Peripheral Blood Mononuclear Cells (PBMCs) Cultured in Conditioned Medium (CM) of K562 Cell Culture AAM Adil, L Vallinayagam, K Chitra, S Jamal, AK Pandurangan, N Ahmed Journal of Environmental Pathology, Toxicology and Oncology 38 (2)
- 43. Cancer immunotherapy: Targeting immunosuppressive tumor microenvironment NA A.A Mohamed Adil Oncobiology and Targets 2014

Annals of R.S.C.B., Vol. 24, Issue 1, 2020, pp. 649- 695 Received 18April2020; accepted 23June2020