
Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14615

http://annalsofrscb.ro

A Practitioner Approach of Deep Learning Based Software Defect Predictor

Yashwant Kumar
a
, Dr. Vinay Singh

b

a Department of computing and Information Technology, Usha Martin University, Ranchi,

Jharkhand

b Associate Professor, Department of computing and Information Technology, Usha

Martin University, Ranchi, Jharkhand

ABSTRACT In Software Development Life Cycle (SDLC), the coding plays the very crucial

phase so far as quality of software is concerned. The quality of software highly depends on the

quality of coding done by the software developer. Minor defects in software may results in huge

loss to software development firm. To test phase of the software development life cycle is very

much required, it is a mechanism of quality control system in SDLC. Early detection of defect in

software, mostly during development saves the time of testing and increase the development

efficiently. There are lots of ML Model developed by researchers for said purpose. Natural

Language Processing (NLP) based Software Defect Predictor outperformed the Traditional ML

based techniques. Also Deep Learning based feature extractor has outperformed the hand crafted

Software metric.

INDEX TERMS : Machine Learning, Software Defect Prediction, Natural Language

Processing, Software Metrics.

I. Introduction

Software Defect Prediction (SDP) has become very vital activities in Software Development Life

Cycle (SDLC). The Testing of a large scale software product requires lot of resources and it

involvestime consuming activities, that may results in delayed or failure in product launch. Early

detection of fault in software during development phase helps the teamto minimizes the cost of

testing and improves the effectiveness of software development process.

In Most of Research work,Machine Learning (ML) Techniques[1]arewidely used for Software

Defect Prediction. As Software Defect Predictor is a Supervised Learning Techniques in context

of Machine Learning so it requires lots of historical data to train the good models. Historical

Data of Software Defect is actually labeled data set of PreviousSoftware Project with either

Defective or Non-Defective information, so Software Defect Prediction is aclassification

Problemin parlance of ML Techniques. Many Researcher's has also tried to present it as

regression problem in terms of number of errors found in the modules,[2] but by and large it is

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14616

http://annalsofrscb.ro

presented as binary classification problem which can classifythe module as either Defective(D)

or Non-Defective(N).This can save lot of time and energy for the Testing Team.

The defect dataset is generated from Source Code of the Software. The data consists of featured

data and labeled data (Buggy or Clean) . These feature data is used to determine whether

software is defective or not. There are two ways we can extract feature data. Manually extracted

features and Deep-learning-generated features. The manually extracted feature are traditionally

calculated from Software Metrics. Like MOOD, CK, Halstead, McCabe etc.[3]Whereas DEEP-

learning methods are based on Natural Language Processing (NLP) based pre-processing

techniques. Like One-Hot-Encoding, Word-to-Vector, Glove Encoding and Various Embedding

Techniques like Skip Gram or Continuous Bag of Words (CBOW).

These extracted featured datasets is fed into either Neural Network or Traditional Machine

Learning Based Techniques. The Traditional ML based Techniques mostly used for such type of

classification modelsare Support Vector Machine (SVM), Naive Bayes Classifier (NB), Decision

Tree Classifier (DTC), Logistic Regression and Ensemble Techniques Likes Random Forest,

Bagging and Boosting.

Neural Network Based Techniques are mostly based on Deep Learning Methods which Includes

the Set of Input Layer and Multiple Hidden Layers and Classification based Output Layer. In

recent years Recurrent Neural Network (RNN) based NLP techniques like Long-Short-Term-

Memory (LSTM), LSTM with Attention Layer is widely explored to solve SDP related problem

with high accuracy.[4]

LSTM based model is sequential learning methods and widely used in NLP for Text Generation

and Natural Language Translation task.

The SDP model should predict the defect in Within Project and Cross Projects Modules. Within

Project Defect Prediction(WPDP) is relatively efficient due to availability of historical defect

dataset of previous versions.

To prepare the data from Source code of software, to input in NLP models, the most widely

accepted methods used by researchers are Abstract Syntax Tree (AST) of Programming

language.[3]The AST is programming language neutral and very useful for Cross Project Defect

Predictions, where main issue is either non-availability of historical data or very few historical

data. [5]

The main challenge in training of SDP model is availability of historical data in new software

product. Whichcan be solved by AST based representation of source code of another software

product, that can help to transfer the learning model to new project where no

versionsareavailable as historical data.

The remainder of the paper explained each of these concepts in details.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14617

http://annalsofrscb.ro

II. Software Defect Prediction

The Software Defect Prediction is a set of techniques, which expose the probability of mistakes

in Software System using Machine Learning Methods. In other words it is used to establish the

relationship between software metrics and bugs. [6]

Several large software companies that won't review software modules unless the SDP models

predict that there are high percentage of fault prone. Hence, defect detectors have a major

economic impact when they may force programmers to rewrite the codes.

The defect dataset prepared for defect prediction consists of columns for software metrics

(basically used for defect prediction) and one column having value either 0 (Defect) or 1 (Non-

Defect).

The embedding of source code is another method for extracting the pattern/features in the source

code along withone column, that keeps the probability of defect or non-defect labels, which is

further used for training the SDP Models. [7]

A. Software Metrics for Defect Prediction

The Software metrics (i.e. features) are hand crafted and manually designed to measure the

software entity. It is a quantitative measurement that assigns numbers or symbols to attributes of

the measured entity.This entity can be source code of application or a software development

process activity. Many previous researchers have pointed out that there is a relationship between

software metrics and defect predictions.Software metrics can be classified as static code metrics

and process metrics.

There are variousstatic code metrics derived from source code, andbeing introduced by

researchers, mostly used for SDP. Some of the potentialsource code metrics are listed below.[8]

Introducer Metric Name Descriptions

M.H. Halstead : base

measures

mu1 number of unique operators

 mu2 number of unique operands

 N1 total occurrences of operators

 N2 total occurrences of operands

 length = N N1 + N2

 vocabulary = mu mu1 + mu2

 mu1' potential operator count (just

the functionname and

the"return" operator)

 mu2' potential operand count. (the

number of arguments to the

module)

M.H. Halstead :Derived volume = V = N * log2(mu) the number of mental

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14618

http://annalsofrscb.ro

Introducer Metric Name Descriptions

measures: comparisons needed to write a

program of length N

 V* = (2 + mu2')*log2(2 +

mu2')

Volume on minimal

implementation

 L = V*/N program length

 D = 1/L difficulty

 L' = 1/D Inverse difficulty

 I = L'*V' intelligence

 E = V/L effort to write program

 T = E/18 seconds time to write program, time

estimator

M.H. Halstead : lines of code

measures

LOCode line count

 LOComment count of lines of comments

 LOBlank count of blank lines

 LOCodeAndComment line count + count of lines of

comments

 branchCount Number of the flow graph

McCabe Metric v(G) Cyclomatic Complexity

 ev(G) Essential Complexity

 iv(G) Design Complexity

 loc Linecount of code

CK metric WMC Weighted Method per Class

 DIT Depth of Inheritance Tree

 NOC Number of children

 CBO Coupling between objects

 RFC Response for a Class

 LCOM Lack of Cohesion in Methods

MOOD Metric AHF Attribute Hiding Factor

 MHF Method Hiding Factor

 MIF Method Inheritance Factor

 AIF Attribute Inheritance Factor

 COF Coupling Factor

 POF Polymorphism Factor

B. Process Metrics for Defect Prediction

Process metrics can be extracted from Source Code Management system(like Git) based on

historic changes on source code overtime. Source code management System (SCMS) is used to

maintain trails of modifications to a source code repository. SCMS keeps the history of changes

to a code base and helps resolve conflicts when merging updates from multiple developers.

SCMS is also called as Version control System (VCS). Some researcher suggested that the

Change (process) metrics are more efficient than static code metrics for defect prediction

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14619

http://annalsofrscb.ro

because process data contains more discriminatory information about defect distribution than the

source code itself.

The Some of the popular process metrics used for SDP are listed below[9]

Category Metric Name Descriptions

Author-Ship OWN Owner's Contributions

 EXP Developer's Experience

 DDEV Number of Distinct Developers

 ADEV Number of Active Developers

Change Type NREFAC Number of Refactoring Changes

 NBF Number of Bug Fixing Changes

Change Interval MAXI/MINI/AVGI Max/Min/AVG Time Gap between two changes

Code Churn ADD Lines of code added

 DEL Lines of code deleted

 HCM Entropy of Multiple Changes

Co-Change MCO Maximum Number of Files co-changed

 ACO Average Number of Files co-changed

 NDDEV Co-Change in properties of files like ownership

Semantic Change Type COND Number of condition expression change

 ELSE Number of ELSE part changes.

C. Software Feature Extraction for Defect Prediction

Feature Extraction is a DEEP Learning based model used to generate featured data for Software

Defect Prediction. It is a powerful technique to extract semantic and syntax features hidden in

source code. The Deep learning based methods automatically encode the feature from source

code (Software Feature) or from change sequence (Process Data) from Source Code

Management System.

To extract the semantic and syntax feature of source code, the most popular methods used by

researchers is Abstract Syntax Tree (AST) generated from source code.

III. Overview of Process, AST Conversion from Source Code to Feature Data

while (j <= 1000)

{

 sumResult += j;

 j++;

}

Snippet Source Code

AST of Simple Code Snippet

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14620

http://annalsofrscb.ro

Figure: Source Code Conversion to AST

Vocabulary (While, Infix, Block, SimpleName, NumberLiteral, Postfix, Expression,

Assignment)

Mapping Table

Mapping Table Can be Created Using TF-IDF, CBOW, and most effective Deep Learning based

Methods Like Word2Vecas Follows

Vocabulary Vector Representations (Size of the Vector is Number of Output in

Output Layer)

While [-0.02878454 -0.01797051 0.00237926 -0.00371939 0.00606985 -

0.04638186

 0.03167989 -0.04400144 -0.04536068 0.0120385]

Infix [0.03788391 -0.0389317 0.02806017 0.00850868 -0.00974257 -

0.01735647

 -0.02383494 0.01912074 0.04257665 -0.01970553]

Block [-0.04847089 -0.04180741 0.03103842 -0.04266282 0.00140287

0.03663715

 -0.00899701 0.02680084 0.03196992 -0.03501695]

SimpleName [-0.00751654 0.02754606 -0.05469051 -0.00526549 0.01212245 -0.0509387

 0.02762272 0.00043802 0.03384242 -0.04551497]

....

While

Infix

SimpleName NumberLiteral

Block

Expression

Assignment

SimpleName SimpleName

Expression

Postfix

SimpleName

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14621

http://annalsofrscb.ro

TrainingDataset

Features Label

V1,V2,V3..............Vn 1

V1,V2,V3..............Vn 0

V1,V2,V3..............Vn 0

V1,V2,V3..............Vn 0

V1,V2,V3..............Vn 1

..... ...

Test Sample

Features

V1,V2,V3..............Vn

The above process depict how source code is converted into Vectors, that can be passed as Input

to Various ML Algorithms. The meta data of source project is extracted from Version Control

System (VCS) and Bug Tracking System (BTS) (e.g. Jira, Bugzila).(D. Chen et al., 2019) The

VCS keeps track of all the source code of the modules and BTS keeps the information about the

defect labels of concerned module. This forms the data set to be used for Pre-Processing. The

dataset of source code so obtained is converted into Token Vectors and attached with defect

labels. This forms the Pre-processed Data for the Defect Prediction Models. The Pre-Processed

data is split into Training Set and Test Set. The Training Set is fed into ML Models to train and

Test Set is used to Validate the Model.

IV. Evaluation Metric

The performance of Classification based Supervised SDP models is measured by various

evaluation metric. The most frequently preferred evaluation metrics by researchers are Recall,

Precision, F1-score and AUC.[10] . These evaluation metrics is based on confusion matrix. For

binary classification of SDP, if Defect is represented as 0 (Positive) and Clean or Non-Defect is

represented as 1 (Negative),then there are total four types of output possible.

1. True Positive : Model predicts the instance as Defective (0) and it is actually Defective. (0)

2. True Negative: Model predicts the instance as Non-Defective (1) and it is actually a Non-

Defective (1)

3. False Positive : Model predicts the instance as Defective (0) but actually it is Non-Defective

(1)

4. False Negative: Model predicts the instance as Non-Defective (1) but actually it is Defective.

(0)

 Predicted Class

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14622

http://annalsofrscb.ro

0 1

Actual class 0 True Positive False Negative

1 False Positive True Negative

Figure: Confusion Matrix

Recall refers to the Ratio of number of cases, which are correctly classified as buggy.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Precision refers to the ratio of number of cases classified to be buggy.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

F1-Score is the weighted harmonic average of them.

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 𝑥𝑅𝑒𝑐𝑎𝑙𝑙𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

AUC is the trade-off between true positive rate (TPR) or recall, and false positive rate (FPR).

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

AUC is very powerful to represent the class distribution and reduce misclassification costs. It is

mode widely used Evaluation metric for Defect Prediction.AUC close to 1 is considered has best

model for classification.

Figure : Area Under the Curve (AUC)

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14623

http://annalsofrscb.ro

V.Comparison of Traditional Software Defect Predictor

Authors Data source Metrics Algorithm/Method Result

[11] Six publicly available

software defect datasets:

1. Ant-1.7.

2. Camel-1.6.

3. KC3 datasets.

4. MC1.

5. PC2.

6. PC4.

These Dataset had total 51 different

Metrics (LOC, McCabe’s CC,

Halstead difficult, Condition

Count, Branch count, Number of

unique operands) and OO Metrics

(C.K. Metrics and MOOD Metrics)

(Weighted methods for class,

Depth of inheritance tree,

Inheritance coupling, Number of

children)

The Ensemble system

incorporates 7 classifiers:

Random forests (RF),

Gradient boosting (GB),

Stochastic Gradient

Descent (SGD), weighted

SVMs (W-SVMs),

Logistic regression (LR),

Multinomial Naive Bayes

(MNB) and Bernoulli

Naive Bayes (BNB) as

base classifier. It uses

Greedy forward selection

(GFS) as a feature

selection technique.

The highest AUC results was attained

by the proposed model against the

PC2 dataset of AUC measure of 0.91.

[12] There were two dataset

used one from the MIS

dataset and the KC2

dataset.

They used 21 software metrics of

the KC2 dataset (e.g., LOC, V(G),

EV(G), etc.), The MIS dataset

contains 12 metrics.

This paper proposed fully

connected neural network

To predict the number of

defects in a software

module.

The mean squared error (MSE) of

MIS varies from 66.30 to 46.01, and

the R
2
 of MIS varies from 0.32 to

0.42. Similarly, the MSE of KC2

varies from 0.13 to 0.109, and the R
2

of KC2 varies from 0.193 to 0.297.

[2] It used NASA datasets.

They are MC2,PC1, KC1,

PC3,MC1,PC2.

Logical line count, Cyclomatic

complexity, Halstead difficulty and

Halstead length are mostly

preferred in this paper as compared

to total number of lines.

It introduced the methods

of Cost Sensitive Voting

(CSVoting) and Cost

Sensitive Forest

(CSForest).

It is shown that CSForest coupled

with CSVoting produced the lower

cost predictions than the existing

techniques.

[13] Four NASA Datasets,

Two datasets (PC1 and

JM1)are from software

projects written in a

metrics are McCabe, McCabe and

Butler, Halstead metrics, Total 21

metrics has been used.

This paper presents the

application of hybrid

artificial neural network

(ANN) and Quantum

The AUC value distributions on for

(QPSO + ANN) model for

PC1,JM1,KC1,KC3 dataset are

0.899,0.777,0.791 and 0.862

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14624

http://annalsofrscb.ro

procedural language (C)

The other two

datasets(KC1 and KC3)

are from projects written

in object-oriented

languages (C++ and Java)

Particle Swarm

Optimization (QPSO) in

software fault-proneness

prediction. QPSO is

applied for reducing

dimensionality.

respectively. The time complexity

value of Model (QPSO + ANN) for

PC1,JM1,KC1,KC3 is .29,

6.13,2.85,1.46 respectively

[1] 10 open-source projects

with 34 releases dataset,

available at the

PROMISE repository are

used. Namely Ant,Camel,

Ivy,Jedit,Lucene,

Poi,Synapse,Velocity,Xal

a and ,Xerces Projects

20 static code metrics, they are CK

suite

(WMC,DIT,LCOM,RFC,CBO,NO

C), Martin’s metrics (CA,CE),

QMOOM suite

(DAM,NPM,MFA,CAM,MOA),

Extended CK suite

(IC,CBM,AMC,LCOM3), and

McCabe’s CC

(MAX_CC,AVG_CC) as well as

LOC.

The simple static code

metric such as LOC has

been validated to be a

useful predictor of

software defects, it

defines progressive

reduction on the size of

feature set as metric set

simplification.

Minimum metric subset is ideal

because of its ability to provide good

results in different scenarios and

being independent of classifiers.

Their results shows that simple

classifiers such as Naïve Bayes are

more suitable to be the choice for

defect prediction

[14] The 15 datasets of CC are

(ant, arc, camel, elearn,

jedit, log4j, lucene, poi,

prop6, redact-or, synapse,

system, tomcat, xalan,

xerces).

Static code attributes are based

mainly on object-oriented metrics

including weighted methods per

class, number of children, lines of

code, etc.

Double Transferring

Boosting (DTB)

algorithm, which is the

extension of

AdaBoosting Sequential

Ensemble Technique.

imbalance data

oversampling (SMOTE)

is used

The Proposed model achieved PD,PF,

G-Measure and MCC as 0.702,0.330,

0.664 and 0.282 respectively.

[15] The Apache data set the

independent variables are

nominal type and

dependent variable is

numerical type.

No specific metrics were

mentioned in the paper.

Grouping the different

range of performance

value into four(1-4)

groups. Four commonly

used machine learning

techniques were

compared using WEKA

The prediction accuracy obtained for

untrained data set in Neural Network

is high.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14625

http://annalsofrscb.ro

tool. J48, Simple Cart,

Multilayer Back-

propagation NN and

Naive Bayes. Neural

network was created

using MATLAB.

[16] They focused on actual

software project data sets

No Specific Metrics is mentioned

in this paper.

They have compared the

methods of reliability

assessment based on

neural network with that

of deep learning.

They have shown that the proposed

method based on the deep learning

can assess better than that based on

neural network.

[17] The details of 9 open

source projects used were

(Caffeine, Fast-Adapter,

Fresco, Frezzer,Glide,

Design-Patterns, Jedis,

Mem-Cached Client,

MPAndroidChart) taken

from Git.

The study uses a set of 14 Object-

Oriented, Inheritance and other

metrics to develop defect

prediction model.

The Experiments was

setup to compare

performance of

prediction models

developed using 14

machine learning

techniques (Perceptron,

Widrowhoff, back

propagation, LVQ1,

multipass LVQ,

hierarchical LVQ, SOM,

multipass SOM, AIRS 1,

AIRS 2, CLONALG,

CSCA, Immunes1,

Immunes2, Immunes99).

The AUC values of Single layer

perceptron were between .0852-

.0997. It shows that Single layer

perceptron outperformed over other

ML techniques.

[18] In this study, they used

thirteen datasets

including JM1, PC4,

KC2, MC1, KC1, PC3,

CM1, MW1, PC1, Class,

MC2, KC3 and PC2 from

NASA.

Some common OO metrics used

were :- WMC,NOC, DIT, CBO,

RFC, SLOC or LOC, LCOM etc.

Choosing the machine

learning techniques:

Logistic Regression, K-

nearest Neighbors,

Decision Tree, Random

Forest, Naïve Bayes,

Support Vector Machine

The results could realize that SVM

achieved the best F1 value.

Multilayer Perceptron was the best

technique in predicting errors for

method-level datasets compared to

other techniques. The ROC curve for

Multilayer Perception gives the

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14626

http://annalsofrscb.ro

and Multilayer

Perceptron;

highest AUC value (0.91).

[19] This paper states that no

complete and integrated

dataset for showing all of

the data metrics.

In the static platform, features of

code structure are measured as

metrics. Static measurements are a

number of supervisors and a

number of bunches . Dynamic

platforms measure testing

perfectionism. Basic element

measurements depend on auxiliary

and information stream scope . The

connection between product

measurements and blame

inclination.

Hybrid of the Machine

learning-based faults

prediction model using

the MLP and PSO

algorithms in IoT

applications.

Experimental results showed that the

proposed verification method has

minimum verification time and

memory usage for evaluating critical

specification rules than other research

studies.

[20] The model is tested on 4

publicly available

datasets from the

PROMISE repository.

There were cm1, kc1,

mc2, pc1.

This prediction is done using

different software metrics. The

commonly used software metrics

are McCabe metrics, Halstead

metrics and CK metrics.

Investigated the effect of

resampling technique on

different datasets. Five

classifiers namely

logistic regression, K

Nearest Neighbor

(KNN), Decision tree,

Multinomial naive bayes

(MNB) and Naive Bayes

(NB) used.

It is Shown that the model averaging

method has performed much better in

terms of performance measure as

compared to stacking and voting.

[21] NASA data sets (JM1,

KC3, MC1).

There are mainly process-oriented

McCabe, Halstead, and object-

oriented CK (Chidambaram

Kemmerer) metrics were used in

datasets.

Compares the

performance indicators of

LWL, C4.5, Random

forest, Bagging, Bayesian

Belief Network,

Multilayer Feed forward

Neural Network, and

SVM algorithms.

Study of supervised learning software

prediction algorithms, methods of

solving imbalanced classification are

analyzed.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14627

http://annalsofrscb.ro

VI. Emerging Deep Learning Based Software Defect Predictor

A. Natural Language Processing (NLP)

NLP is analysis of natural language using computers, for example

 Machine Translations

 Spell Check (Auto Correct)

 Automated query answering (Chartbot)

 Speech Recognition

 Speech Parsing

 Sentiment Analysis

 Text Generation etc

NLP is based on :

 Probability and Statistics

 Deep Neural Network

 Machine Learning

 Linguistics

 Common Sense

NLP based techniques is being used for solving problems from various domains. Because it is

based on Linguistics, so it is also being explored for software defect because it could understand

the semantics and syntax of the programming languages. Like the natural language the source

code of the project is resembled as corpus, individual file as document, a list of unique node in

AST is vocabulary, and AST is the language model i.e how the nodes are supposed to be

organized.

Comparison of NLP Task in Natural Language and Programming Language

Source of data Natural Language Task Programming Language

Task

Corpus Extract Documents Extract Source Code File

Documents Extract Sentences Extract Abstract Syntax Tree

Sentence/AST Extract Tokens Extract Token

Token Syntax Tree Form Vector representation of

Statements

Document Classification: Sentiment

Analysis (Positive or

Negative) , Topic Extraction

Defect Prediction (Buggy or

Clean)

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14628

http://annalsofrscb.ro

Encoding is the technique of moving sparse (e.g. one hot) to dense vectors. Using Deep Network

Method sparse vector is converted into dense vector. Word2Vec encoding can find the syntactic

and Semantic relationship among words. Large dimension is more expressive but small

dimension of vector train faster. Glove (Global Vector) is more accurate than Word2Vec. The

Glove for various programming language is not yet available.

VII. Research Questions

To evaluative the effective of NLP, in Defect Prediction, we investigate following two research

questions.

RQ1: Why NLP is being used as Research Techniques to solve Software Defect Prediction

Problem, which erstwhile used Tradition ML or Other Deep Learning Methods?

RQ2. Why there were a need to insert NLP Based layers to overcome SDP challenges?

Here is a answer to it. Since NLP is useful in processing sequential data, and it is based on

recurrence, but we need to understand that why recurrence is necessary in processing source

codes. Source code can be represented as sequential one dimensional discrete index. Where each

data points can be represented as Vector. The data points a basically the nodes in AST. The

number of data points in a series can be variablesbuthave some specific position in a series.

Figure: Sequential Data Points

The some other example of sequential data are Speech, Natural Language Text, Music, Protein

and DNA Sequences, time series data like Stock prices etc.

Traditional ML is one-to-one like you have input feature data, then you have some Predictive

Algorithm Function of Supervised Learning and Finally the output classified data.

Figure: Traditional ML Representation

Xn-4 Xn-3 Xn-3 Xn-1 Xn X...
X...

Xn-4 Xn-3 Xn-3 Xn-1 Xn X...
X...

Yn-4 Yn-3 Yn-3 Yn-1 Yn Y...
Y...

f(x) f(x) f(x) f(x) f(x) f(x) f(x)

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14629

http://annalsofrscb.ro

In traditional ML the past occurrence of input or output data is not taken into account. In source

code it is very important to track what came after and what came before like conditional

statement before loop statement or after loop will have different results, also position of operator

in a expression will have different meaning. Like with hand crafted metric, two codes with

different position of operator will have same metric value.

For Example in below two code snippets

The Hand crafted metric like Line of code (loc), operator count, operand count are same in both,

but sequences are different, which results in different output.So considering the sequence of code

is also important.

Somehow in traditional machine learning for sequence, we may use fix sliding window like

below.

Figure: Traditional ML on Sequential Data

But this model does not take into account the influence of distant past data point. This model is

not good for many-to-one model like sentiment analysis and Defect predictions.

void fun1 (Stack s)

{

 for(int i=0;i<10;i++)

 {

 s.push(i)

 print(s.pop());

 }

}

void fun2 (Stack s)

{

 for(int i=0;i<10;i++)

 {

 print(s.pop());

s.push(i)

 }

}

Y...

f(x) f(x) f(x)

Yn-3 Yn-3 Yn-1 Y...

Xn-4 Xn-3 Xn-3 Xn-1 Xn X... X...

Y...

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14630

http://annalsofrscb.ro

Another method in Traditional ML for sequences is to form a some short of histogram and

convert sequence into vector to get fix output of variable length data. But using this method does

not consider the influence of order of data because the change in the order does not have any

effect on the vector representation.

Figure: Using Histogram in Traditional ML on Sequential Data

Introduction of memory (recurrence or state) in neural networks computes the memory state in

addition to an output, which is sent to the next time instance. The number is past memory

instance is configurable, so even distant data point in the series can be taken into account to get

the defective state of the modules. In the most basic form, memory state are simply a hidden

neurons (h).

Figure: RNN on Sequential Data (Basic Model)

Xn-4 Xn-3 Xn-3 Xn-1 Xn X...
X...

f(x) f(x) f(x) f(x) f(x) f(x) f(x)

Histogram

g(x

)

Yn

Xn

y(x,h)

h(x,h)

Yn

hn-1 hn

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14631

http://annalsofrscb.ro

SDP is considered as many-to-one analysis of sequential data using "recurrence". As many

sequential statement in a software module will classify the source code as defective or non-

defective.

Figure: Many to One, RNN on Sequential Data (Example Model)

Source code of the programming language is a Sequential data, NLP provides the models that is

used to process the sequential data. NLP model is designed to have memory to process sequential

data. The algorithms or layers of deep learning in NLP includes the Recurrent Neural Network

(RNN), LSTM, and Advanced LSTM. Below section describe it in more details.

Recurrent Neural Network (RNN)

Back Propagation through Time (BPTT) is used to tune the weight in RNN. The major

drawback of RNN is vanishing or exploding gradient while tuning weight in RNN.

Figure: RNN on Sequential Data (BPTT)

Xn

y(x,h)

h(x,h)

Yn

Xn-1

y(x,h)

h(x,h)

Xn-2

y(x,h)

h(x,h)

Xn-3

y(x,h)

h(x,h)

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14632

http://annalsofrscb.ro

LSTM (Long Short Term Memory) in Defect Predictions

LSTN is a special structure of RNN with forget Gates. These gates can be used to avoid the issue

of vanishing or exploding gradient found in basic RNN models. A gate is usually sigmoid

function which output is either 0 or 1,i,e. on or off.

Figure: RNN on with Three Gates Representation

SDP Model Representation in LSTM

Figure: LSTM Model for SDP

Defective

Project Source Code

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14633

http://annalsofrscb.ro

There are various advance structure of LSTM, which can be used like Multilayer LSTM where

more than one LSTM hidden layers can be used. Bidirectional LSTM which allows reverse flow

of information as well, like context from future nodes. LSTM with attention Mechanism, which

also takes context of the instance into consideration.

There are some drawbacks also with LSTM like as follows:

 Separate LSTM for separate programming language

 High Training Loss

o Too few hidden layers

o Only one hidden layers

 Over fitting

o Model has too much freedom

 Too many hidden nodes

 To many blocks

 To many layers

 Not-bi-directional

VIII. CONCLUSION AND FUTURE SCOPE OF WORK

In this article, we tried to present the importance of Deep Learning based methods to predict the

software defect during the early stage of software development life cycle. Natural Language

Processing has natural Resemblances with Programming Language. So NLP can be used to

understand the semantic and syntax feature of programming language and capability to develop

the generic software defect predictor. The parsing of Programming language into common

Syntax Tree, independent of language specific keywords, can make the models language

independent and generic in nature. That can be used for Within Project and Cross Project Defect

Prediction by minor modification in Model using Transfer the learning Techniquesby

customizing certain language specific layers.

REFERENCES

[1] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software defect prediction

with a simplified metric set,” Information and Software Technology, vol. 59, pp. 170–190,

Mar. 2015, doi: 10.1016/j.infsof.2014.11.006.

[2] M. J. Siers and M. Z. Islam, “Software defect prediction using a cost sensitive decision

forest and voting, and a potential solution to the class imbalance problem,” Information

Systems, vol. 51, pp. 62–71, Jul. 2015, doi: 10.1016/j.is.2015.02.006.

[3] Z. Cai, L. Lu, and S. Qiu, “An Abstract Syntax Tree Encoding Method for Cross-Project

Defect Prediction,” IEEE Access, vol. 7, pp. 170844–170853, 2019, doi:

10.1109/ACCESS.2019.2953696.

[4] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM Model for Software

Defect Prediction,” IEEE Access, vol. 7, pp. 83812–83824, 2019, doi:

10.1109/ACCESS.2019.2925313.

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14634

http://annalsofrscb.ro

[5] D. Chen, X. Chen, H. Li, J. Xie, and Y. Mu, “DeepCPDP: Deep Learning Based Cross-

Project Defect Prediction,” IEEE Access, vol. 7, pp. 184832–184848, 2019, doi:

10.1109/ACCESS.2019.2961129.

[6] T. M. Phuong Ha, D. Hung Tran, L. T. My Hanh, and N. Thanh Binh, “Experimental Study

on Software Fault Prediction Using Machine Learning Model,” in 2019 11th International

Conference on Knowledge and Systems Engineering (KSE), Oct. 2019, pp. 1–5, doi:

10.1109/KSE.2019.8919429.

[7] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep Semantic Feature Learning for Software

Defect Prediction,” IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1267–

1293, Dec. 2020, doi: 10.1109/TSE.2018.2877612.

[8] R. Harrison, S. Counsell, and R. Nithi, “An overview of object-oriented design metrics,” in

Proceedings Eighth IEEE International Workshop on Software Technology and

Engineering Practice incorporating Computer Aided Software Engineering, Jul. 1997, pp.

230–235, doi: 10.1109/STEP.1997.615494.

[9] M. Wen, R. Wu, and S.-C. Cheung, “How Well Do Change Sequences Predict Defects?

Sequence Learning from Software Changes,” IEEE Transactions on Software Engineering,

vol. 46, no. 11, pp. 1155–1175, Nov. 2020, doi: 10.1109/TSE.2018.2876256.

[10] Y. Qiu, Y. Liu, A. Liu, J. Zhu, and J. Xu, “Automatic Feature Exploration and an

Application in Defect Prediction,” IEEE Access, vol. 7, pp. 112097–112112, 2019, doi:

10.1109/ACCESS.2019.2934530.

[11] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble

learning on selected features,” Information and Software Technology, vol. 58, pp. 388–402,

Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.

[12] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,”

Neurocomputing, vol. 385, pp. 100–110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

[13] C. Jin and S.-W. Jin, “Prediction approach of software fault-proneness based on hybrid

artificial neural network and quantum particle swarm optimization,” Applied Soft

Computing, vol. 35, pp. 717–725, Oct. 2015, doi: 10.1016/j.asoc.2015.07.006.

[14] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in cross-company

software defects prediction,” Information and Software Technology, vol. 62, pp. 67–77,

Jun. 2015, doi: 10.1016/j.infsof.2015.01.014.

[15] T. Shailesh, A. Nayak, and D. Prasad, “Performance Prediction of Configurable softwares

using Machine learning approach,” in 2018 4th International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT), Mangalore, India, Sep.

2018, pp. 7–10, doi: 10.1109/iCATccT44854.2018.9001957.

[16] Y. Tamura, M. Matsumoto, and S. Yamada, “Software Reliability Model Selection Based

on Deep Learning,” in 2016 International Conference on Industrial Engineering,

Management Science and Application (ICIMSA), May 2016, pp. 1–5, doi:

10.1109/ICIMSA.2016.7504034.

[17] R. Malhotra, L. Bahl, S. Sehgal, and P. Priya, “Empirical comparison of machine learning

algorithms for bug prediction in open source software,” in 2017 International Conference

on Big Data Analytics and Computational Intelligence (ICBDAC), Mar. 2017, pp. 40–45,

doi: 10.1109/ICBDACI.2017.8070806.

[18] H. D. Tran, L. T. M. Hanh, and N. T. Binh, “Combining feature selection, feature learning

and ensemble learning for software fault prediction,” in 2019 11th International Conference

Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 6, 2021, Pages. 14615 - 14635

Received 25 April 2021; Accepted 08 May 2021.

14635

http://annalsofrscb.ro

on Knowledge and Systems Engineering (KSE), Oct. 2019, pp. 1–8, doi:

10.1109/KSE.2019.8919292.

[19] A. Souri, A. S. Mohammed, M. Yousif Potrus, M. H. Malik, F. Safara, and M.

Hosseinzadeh, “Formal Verification of a Hybrid Machine Learning-Based Fault Prediction

Model in Internet of Things Applications,” IEEE Access, vol. 8, pp. 23863–23874, 2020,

doi: 10.1109/ACCESS.2020.2967629.

[20] E. Elahi, S. Kanwal, and A. N. Asif, “A new Ensemble approach for Software Fault

Prediction,” in 2020 17th International Bhurban Conference on Applied Sciences and

Technology (IBCAST), Jan. 2020, pp. 407–412, doi: 10.1109/IBCAST47879.2020.9044596.

[21] J. Ge, J. Liu, and W. Liu, “Comparative Study on Defect Prediction Algorithms of

Supervised Learning Software Based on Imbalanced Classification Data Sets,” in 2018 19th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), Jun. 2018, pp. 399–406, doi:

10.1109/SNPD.2018.8441143.

