Characterization of *Sinirhodobacter sp.*, and *Bacillus zanthoxyli* from Bio methanation plant with emphasis on its plant growth promotion(PGP).

2 3 4

5

6

7

8

9 10

11 12

13

14

15 16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

1

K.Keerthana Ponni^{1, 2}, A.Michael¹, S.Radhesh Krishnan², K.S.Ragunath², R.srinivasan², G.Balaji², N.Prabhakaran², M.Gracy²and K.Latha²

Author Affiliations:

¹ Department of Microbiology, PSG College of Arts & Science, Coimbatore-641014. ² R&D division extension, T.Stanes and company limited, Coimbatore- 641018.

Corresponding author:

Dr. K.Latha - R&D division extension, T.Stanes and company limited, Coimbatore- 641018 **Dr. A. Micheal** - Department of Microbiology, PSG College of Arts & Science, Coimbatore- 641014.

Key words: Bio methanation plant, Algal biomass, Sinirhodobacter, B.zanthoxyli, PGP.

Abstract:

Plant growth promoting bacteria have gained significant role in its application as an agricultural input. Since most of the isolates that were investigated for their plant growth promoting potential were sourced from various habitats (terrestrial and marine), the present study was designed to identify and utilize isolates frombio methanation plants, comprising of spent waste from production units (mainly marine algae). The isolates from the samples of Biomethanation plants were identified and screened for their majorpotential PGP activities to assess its suitable applications.. Sinirhodobactersp., and Bacillus zanthoxyli was observed to be non-hemolytic bacteria with positive results for N fixation and hydrolytic enzyme production. B.zanthoxyli exhibited the trait of solubilizing zinc and the zone of zinc solubilization index; zinc solubilization efficiency for the isolate was 3.5 & 350% in (24 hours), 7.75 & 750% in (48 hours). Sinirhodobacter sp., and B.zanthoxyli produced 90µg/ml and 176µg/ml of Indole acetic acid (IAA). B.zanthoxyli showed the presence of orange halo zone formation in CAS agar medium that is representing positive siderophore production. Italsopossessed ACC deaminase activity by releasing 147.8 μ moles/ml of α -ketobutyrate. The optimum pH of both the isolates was observed to be 7.00 and optimum temperature for growth was observed to be 37°C for Sinirhodobacter sp., and at 30°C for B.zanthoxyli. This identification of two new less studied bacteria could pave way in developing novel value added plant growth promoting products.

31 32

33

34

35

36

37

38 39

40

41

Introduction:

Tremendous demand in Biofuels has led to an enlarged interest in renewable energy sources. Biofuels production utilizing biomass conversion has predominantly gained attention, as it is an environment friendly, clean renewable source (Ward *et al.*, 2014). Biogas is produced by the anaerobic digestion or fermentation of biodegradable materials such as agricultural, community based and industrial feedstock's. The application value of biogas and the improvement of biogas production have been well developed since last two decades. The third generation of biofuels based on macro and micro algae is gaining momentum. Macro algae located on the coastline contribute a wide part of the ocean biomass upto approximately 30,000

42 species. Macro algae are rich in nutritional composition and mostly used as food and feed by 43 the coastal people. Due to their unique properties and demand the development of macro algae 44 cultivation methods was increased drastically. Macro algae are utilized by microorganisms, for 45 their carbon rich constituents present within the cell walls (e.g. Agar, Carrageenan, laminarin, 46 pectin, cellulose, fucoidan,) which help microbes in colonization. The microorganisms present in the cell walls, such as macro algal polysaccharide degrading bacteria help in recycling algal 47 48 biomass. The biogas production from microalgae is well documented(Ward et al. 2014, 49 Fuentes et al. 2016, Jard et al., 2013), but the production from macroalgae is less evident, and more research into production is required(Bharathiraja et al., 2018)The use of marine 50 51 macroalgae biomass reduces difficulties like hypertrophication, exhaustion of resources, and 52 diminution in biodiversity (Theuerl et al., 2019).

53 54

55

56

57

58

59

60

61

62

63

64

65

66 67

68

69

70

71

72

73

74

75

76

77

78

79

The microbiomes of anaerobic digesters are extremely complex with diversified microbial communities that aid in the conversion of biomass into biogas by four sequential processes namely hydrolysis, acidogenesis, acetogenesis/dehydrogenation, and methanogenesis (Theuerl et al., 2019). The sequential run of these steps is progressed by using metabolites or end products of one process as precursors for the next process. The recent understandings of the microbiome of biogas characterized by (Theuerl et al., 2019) as 1.microbiomes are specific to the anaerobic digester. 2.Microbes are defined by the substrate and function of the digester. 3. The identity and function of the isolates in a digester is still not well defined. An improved understanding of the aerobic and anaerobic microbiome of anaerobic digesters including their role and ecological interactions aids in the better development of bio methanation plants. All inclusive study on microbial diversity of anaerobic digesters show that species belonging to the Proteobacteria, Bacteroidetes, Firmicutes, Actionbacteria, Synergistetes and Euryarchaeota are predominant (Houari et al. 2020)Identification of microbial diversity both culturable and non culturable methodologies, through the use of sequencing tools like 16s rRNA sequencing, gene amplification, metagenome, metatranscriptome, and metaproteome gives better understanding on the unculturable microbial diversity and enrichment techniques for isolation of culturable microbes (Limet al., 2020). In our previous study (Ponni et al., 2019) taxonomic profiling of biogas producing communities by methyl coenzyme reductase α-subunit (mcrA) gene Amplicon sequencing was highlighted. The understanding of the microbiome helps in determining the conditions for successful identification of suitable or specific microbiome and their application as microbial indicators for upgrading bio methanation, the use of specific single organism/microbial consort in agricultural areas, like to enhance soil quality, crop production, and nutrient/disease management in plants. The present study elucidates identification of microbiome from anaerobic digesters by culturing and 16s rRNA identification and an attempt to studythe plant growth promoting bacterial community for development of a value added biofertilizers in nutrient management for agricultural application.

83 Materials and methods:

84 Spent algal biomass collection:

- 85 The spent wastes of (Sargassum and Kappaphycus sp.), macro algae were collected from the
- 86 production warehouse of T. Stanes and Company limited and recycled for biogas production
- with the developed Cow dung-seaweed (CDS) inoculum.

Exploration of culturable plant growth promoting microorganisms:

- 89 The CDS inoculum and samples from pilot and large scale bio methanation (BM) plant were
- 90 checked for their microbial activity in aerobic and anaerobic conditions. The isolation of
- anaerobic bacteria was carried out in sodium thioglycollate (ST) medium and aerobic bacteria
- 92 in plate count agar (PCA). The CDS inoculum and BM plant samples were serially diluted and
- 93 pour plated on to the ST medium, incubated in anaerobic jar with gas pak, to maintain
- 94 complete anaerobic conditions with an incubation period of 7 days. Aerobic organisms pour
- 95 plated on PCA and incubated at 30°C for 5 days. After incubation, different colonies were
- marked as CDS MET O1 to 06, CDS M1 to M5 and sequential subcultures were done to obtain
- 97 pure cultures.

88

109

116

98 Screening for plant growth promoting traits:

99 **Nutrient solubilization:**

- 100 Phosphate solubilization was tested in Pikovskaya medium (Pikovskaya, 1948); nitrogen
- fixation in nitrogen free malic acid medium by modified IS 14806:2000 method, Potassium
- solubilization checked in Alkensandrov agar (Alkansandrov, 1967), zinc solubilization in Zinc
- oxide agar medium. The degree of solubilization was determined by measuring the zone of
- solubilization in mm. Zinc solubilization index (ZSI) was calculated by dividing halo zone by
- colony. The zinc solubilization efficiency was calculated by ZSI multiply with 100. (Vazques
- 106 et al 2000). Silica solubilization was evaluated using silica medium incorporated with
- magnesium tri silicate with glucose as sole source of carbon. Clear zone around the colonies
- indicates the Si solubilizing ability of the bacteria. (Naureen et al. 2015)

110 Plant growth promoting activities:

- 111 IAA production was evaluated in 0.1% tryptophan supplemented in peptone water (Loper and
- 112 Schroth, 1986), ACC deaminase activity was analyzed as per the method of (Penrose & Glick,
- 2003), Siderophore production was screened in Chrome Azurol S agar medium as defined by
- 114 (Alexandar et al., 1991). Hydrogen cyanide production tested in Tryptic soy agar medium
- incorporated with 1% glycine as described by (Correa *et al.*, 2005).

Molecular characterization and biochemical characterization:

117 The genomic DNA was isolated as specified by (Atashpaz et al. 2010) and the 16S rRNA was

- 118 amplified with 27F and 1492R Primer, the amplified product was purified and sequenced.
- 119 General characteristics of the isolates were checked by examining Gram staining, oxidase,
- 120 catalase, and fluorescens @ 354nm. Pathogenicity of all the isolates checked in sheep blood
- 121 agar medium for zone of hemolysis. Based on the hemolysis test, non-hemolytic isolates CDS
- 122 Met 05 & 06 and CDS M3-2&4 were selected for further investigations

125

145

Optimization of growth conditions - pH and temperature for Sinirhodobacter sp., and Bacillus zanthoxyli:

- The growth conditions of Sinirhodobacter, was checked in the standardized medium (Glucose 126
- $-10g l^{-1}$, MgSo₄ -1.25g l^{-1} , KH₂Po₄ 2g l^{-1} , Yeast extract -2.5g l^{-1} , Peptone 2.5g l^{-1}) Likewise 127
- the *Bacillus zanthoxyli* was studied in (Glucose-8g l⁻¹, Soya peptone -1g l⁻¹, Tryptone-1g l⁻¹, 128
- Peptone -1.5 g l⁻¹, KCl- 0.5g l⁻¹ MgSo₄ 0.25g l⁻¹, KH₂Po₄ 0.8 g l⁻¹, NaCl 2g l⁻¹ for pH 129
- values (3,5,7 & 9) and temperatures (25°C,30°C,37°C&40°C). Overnight grown cultures of the 130
- 131 isolates were inoculated in their selective medium with different pH) and incubated at the
- 132 respective temperatures After incubation, the optical density was read at 540nm in a
- 133 spectrophotometer and the optimum growth conditions were determined.

134 **Results:**

- 135 Eleven isolates were isolated from CDS inoculum and biomethanation plant samples
- 136 All the isolates were checked for their plant growth promoting activities (In vitro) and
- 137 significant results were observed. Maximum solubilization ofphosphate and potassium was
- 138 observed with CDS M-5 (around 14-20 mm zone) within 24 hours. (CDS M3-2, 4, 5 and
- 139 6)marked zinc solubilization with a clear halo zone ranging between 4-22mm.CDS met 03 &
- 140 CDS M3-5 showed silica solubilization, relatively higher compared to other isolates. N fixation
- 141 ability was seen in all isolates. CDS M6 & CDS met 03 showed orange halo zone in CAS agar
- 142
- medium indicating positive results for Siderophore production. IAA production was observed
- 143 in all isolates. No hydrogen cyanide was produced by the isolates. ACC deaminase activity was
- 144 observed with few isolates (CDS MET 5, 6 CDS M3-2 & CDS M3-6).

146 Table 01- Preliminary screening of biomethanation plant isolates for PGP traits:

PGPR	CDS	CDS	CDS	CDS	CDS	CDS	CD	CDS	CDS	CD	CD
activity	Met	Met	Met	Met	Met	Met	S	M3-3	M3-4	S	S
	01	02	03	04	05	06	M3-			M3-	M3-
							2			5	6
	Nutrient solubilization										
Phosphat										+++	
e											
Zinc							+++		+++	+++	+++
Silica			+++							+++	
Potassium										+++	
Nitrogen	++	++	++	++	+++	+++	+++	++	++	+++	+++
fixation											

PGP activities											
IAA	+	++	++	++	+++	+++	+++	++	++	+++	+++
HCN											
Sideropho			++				+++				+++
re											
ACC					+++	+++	+++				+++
deaminas											
e											
				Hydro	olytic en	zymes					
Amylase							+++				+++
Cellulase											
Protease					++	++	+++				+++
Chitinase											

147 {+: Slightly positive, ++: Moderate, +++: Highly positive, ---: Negative}

Microbial identification:

148

149

150

151

152153

154

155156

The microbial analysis of the spent waste of the Bio methanation plant samples resulted in the isolation of 11 isolates. The habitat diversity showed that the isolates were facultative anaerobes and the optimum growth temperatures of the isolates were 37 °C withstanding both aerobic and anaerobic conditions. Morphological studies showed that 7 isolates were gram negative rod shaped organism and 4 gram positive rod shaped organism. The molecular sequencing results and gen bank accession number of the isolates are tabulated in (Table 01). Biochemical characterizations of the isolates are depicted in (Table 02)

157 Table 02 – Molecular identification & gen bank accession number.

S.No	Culture	Source	Culture identified by 16s rRNA	Gen bank
	code		sequencing as	accession number
1	CDS	CDS inoculum	Stenotrophomonas acidaminiphila	MT225950.1
	Met 01	(Lab scale		
2	CDS	biomethanation	E.coli	MT225951.1
	Met 02	plant)		
3	CDS		Enterobacter sp.,	NA
	Met 03			
4	CDS		Exiguobacterium mexicanum	MT225949.1
	Met 04			
5	CDS		Sinirhodobacter sp.,	MT225947.1
	Met 05			
6	CDS		Sinirhodobacter sp.,	MT225948.1
	Met 06			
7	CDS	Biomethanation	Bacillus zanthoxyli	MT225952.1

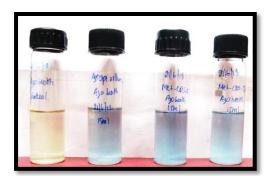
	M3-2	plant sample		
8	CDS		Bacillus paramycoides	MT225953.1
	M3-3			
9	CDS		Bacillus paranthracis	MT225954.1
	M3-4			
10	CDS		Klebsiella variicola	MT225955.1
	M3-5			
11	CDS		Bacillus zanthoxyli	MT225956.1
	M3-6			

Table 03 – Biochemical characterization of the Biomethanation plant isolates

	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CD
Biochemi	Met	Met	Met	Met	Met	Met	M3-2	M3-3	M3-	M3-5	\mathbf{S}
cal tests	01	02	03	04	05	06			4		M3-
											6
Gram	G -ve	G-	G –	G	G-	G -ve	G+ve	G+ve	G	G –ve	G
staining	long	ve	ve	+ve	ve	short	rod	rod	+ve	rod	+ve
	rod	short	rod	rod	rod	rod			rod		rod
		rod									
Oxidase								+++			
Catalase	+++	+++		+++			+++	+++	+++		+++
Fluoresce											
ns @											
353nm											
Growth at	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
37°C											
Lactose	+++	+++	+++							+++	
fermentat											
ion											
Hemolysis	+++	+++	+++	+++				+++	+++	+++	

160 {+++: Positive, ---: Negative}

161 Characterization of Sinirhodobacter and Bacillus zanthoxyli:


Nitrogen fixation: The development of blue color in nitrogen free malic acid medium indicated positive results for nitrogen fixation (Figure 01). The quantitative estimation was determined by measuring the optical density of the isolates at 595 nm which showed significant fixation of N fixation (0.212 & 0.186) for *Sinirhodobacter sp.*, compared to the well-established *Azospirillum sp.*, (0.161).

166167168

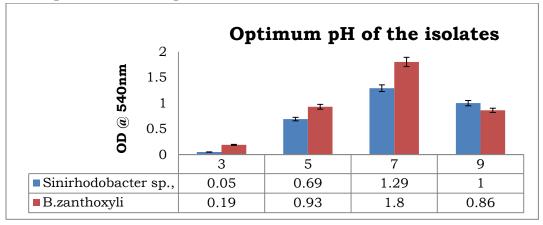
162

163164

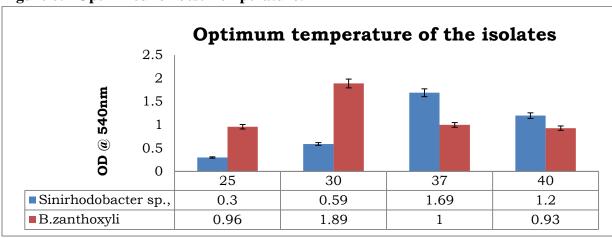
Figure 01 –Photograph showing Nitrogen fixation ability of Sinirhodobacter sp.,

B.zanthoxyli showed a clear zone of solubilization 10mm in 24 hours, 27mm in 48 hours on plate assay with zinc oxide agar. (Figure 02). The zone of zinc solubilization index and zinc solubilization efficiency for the isolate was 3.5, 350% in 24 hours, 7.75, 750% at 48 hours.

Figure 02 –Photograph showing Zinc solubilization zone by B.zanthoxyli on Zinc oxide agar.


Indole acetic acid (IAA), Siderophore and ACC Deaminase activity:

The isolates (Sinirhodobacter sp., and $Bacillus\ zanthoxyli$) produced $90\mu g/ml$ and $176\mu g/ml$ of IAA respectively. $Bacillus\ zanthoxyli$ showed orange halo zone formation in CAS agar medium indicating siderophore production. Bacillus zanthoxyli possessed ACC deaminase activity by releasing $147.8\mu moles/ml$ of α -ketobutyrate.


Optimized growth conditions:

The optimum pH of *Sinirhodobacter sp.*, and *Bacillus zanthoxyli* was 7.00 (Figure-04) and both the isolates were able to thrive at alkaline pH 9.00 and temperature of 40° C. The optimum temperature for maximum growth was observed to be 37° C for *Sinirhodobacter sp.*, and at 30° Cfor *B.zanthoxyli*(Figure-05)

Figure 04- Optimized for best pH

Figure 05- Optimized for best Temperature:

Discussions:

With a huge demand, the availability of plant growth promoting biofertilizers from one source like plant rhizosphere will not be sufficient for agriculture applications, exploitation of other sources are to be identified and studied. The other source that can be utilized is the diversified marine resources with the presence of 9000 species of macro algae. Researchers found the secretion of various fine chemicals, micro nutrients and plant growth promoting hormones, cytokinin, gibberellins, trace elements, vitamins, amino acids and antibiotics(Tay et al., 1987,Thirumaranet al., 2009, Wajahatullah et al., 2009). Based on the significant properties and applications of macro algae, the present study was carried out using the spent macro algal wastes from production unit for bio methane conversion and isolation of PGP microorganisms from the biomethanation plants and characterization of their activities. The isolates (11) were obtained from the bio methanation plant samples include 4 isolates (Stenotrophomonas, Enterobacter, E.coli and Klebsiella) thatbelongs to class gammaproteobacteria, 2 Sinirhodobacter sp., belonging to alphaproteobacteria of Proteobacteria phylum whereas other 5 isolates belonging to class Bacilli of Firmicutes phylum. Most investigated bio methanation plant microbiome consists of Firmicutes and Actinobacteria phylum for fermentation process

220 & the acdiogenicand acetogenic process involves Bacteroidetes, Actinobacteria, chloroflexi, 221 Firmicutes, Proteobacteria, Syngergistetes, CoacimoneteswhereasArchaea involves in 222 methanogenic process(Theuerl et al., 2019). Most organisms associated with macro algae also 223 includes the above phyla (Venter et al., 2004; Ruschet al., 2007, Giovannoni & Stingl, 2005; 224 Burke et al., 2011a). In this study all the isolates were screened for plant growth promoting 225 attributes as, Plant growth promotion by bacteria takes place by direct and indirect mechanism. 226 They help plant by fixing atmospheric nitrogen, solubilizing insoluble nutrients like phosphate, 227 zinc, potassium, by production of organic acids, by producing growth hormone like indole 228 acetic acid and gibberellins directly and produce ACC deaminase production to regulate 229 ethylene, induced systemic resistance ISR, antibiosis and production of metabolites by indirect 230 mode(Miransari 2014). Mostly all isolates showed significant PGP activities. Based on the 231 hemolytic activity, two isolates Sinirhodobacter sp., and Bacillus zanthoxyli were investigated 232 further. Sinirhodobacter sp., observed to be a new isolate and able to fix nitrogen &produce 233 IAA. The isolate is closely related to phototrophic Rhodobacter sp., and no plant growth 234 promoting attributes research studies were available. The research on one isolate 235 Sinirhodobacter hankyongi sp. nov., a novel denitrifying bacterium from sludge samples was 236 isolated by (Young et al 2020) was studied. Likewise Bacillus zanthoxyli showed positive for 237 zinc solubilization with a clear halo zone (28mm zone), ACC deaminase 147.8μmoles/ml of α-238 ketobutyrate& IAA production (176µg/ml of IAA). Previous study state that most PGP 239 bacteria produce ACC deaminase and IAA which degrades ACC as an ethylene precursor, and 240 promotes plant growth. A study conducted by (Usmonov et al 2021) state that Bacillus 241 zanthoxyli was able to suppress the soil borne pathogens and rendered less sensitivity against 242 saline stress. Since the two isolates are explored less for plant growth promoting attributes, 243 their effect on combating plant pathogens in green house experiments and for feasible 244 development of bioformulation for commercial purpose will be investigated in future...

References:

245

246

247

248

249

250

258

- 1. Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production A review on composition, fuel properties, feed stock and principles of anaerobic digestion. *Renewable and Sustainable Energy Reviews*, 90(July), 570–582. https://doi.org/10.1016/j.rser.2018.03.093
- Fuentes, J. L., Garbayo, I., Cuaresma, M., Montero, Z., González-Del-Valle, M., &
 Vílchez, C. (2016). Impact of microalgae-bacteria interactions on the production of
 algal biomass and associated compounds. *Marine Drugs*, *14*(5).
 https://doi.org/10.3390/md14050100
- Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. *Physiologia Plantarum*,
 118(1), 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
 - 4. Theuerl, S., Klang, J., & Prochnow, A. (2019). Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A

- review. *Energies*, 12(3). https://doi.org/10.3390/en12030365
- 5. Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: A review. *Algal Research*, *5*(1), 204–214.
 https://doi.org/10.1016/j.algal.2014.02.001
- 6. Jard, G., Dumas, C., Delgenes, J.P., Marfaing, H., Sialve, B., Steyer, J.P., Carrére, H (2013). Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macro alga Palmaria palmate. Biochemical Engineering Journal, 79, pp.253-258.
- 7. Aleksandrov, V. G., Blagodyr, R. N., &Ilev, I. P. (1967). Liberation of phosphoric acid from apatite by silicate bacteria. *Mikrobiol Z*, 29(11), 1-1.
- 8. Loper, J. E., & Schroth, M. N. (1986). Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. *Phytopathology*, 76(4), 386-389.
- 9. Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. *Mikrobiologiya*, *17*, 362-370.
- 10. Tay, S. A. B., Palni, L. M. S., & MacLeod, J. K. (1987). Identification of cytokinin glucosides in a seaweed extract. *Journal of Plant Growth Regulation*, *5*(3), 133-138.
- 11. Arumugam, R., & Anantharaman, P. (2009). Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (l) medikus. *Journal of Agronomy*, 2(2), 57-66.
- 12. Usmonov, A., Yoo, S. J., Kim, S. T., Yang, J. S., Sang, M. K., & Jung, H. W. (2021).
 The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant
 against Pathogen Infection and High Salinity Stress. *The Plant Pathology Journal*, 37(1), 72.
 - 13. Indian Standard, 14807:2000. Phosphate solubilizing bacterial inoculants (PSBI)-Specification. Bureau of Indian Standards, New Delhi, India, 1–4 pp.
 - 14. Alexander, D. B., &Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. *Biology and Fertility of soils*, *12*(1), 39-45.
- 15. Lee, Y. W., Hoang, T. S., Rhee, M. S., Lee, S. Y., &Im, W. T. (2020).
 Sinirhodobacterhankyongi sp. nov., a novel denitrifying bacterium isolated from sludge. *International journal of systematic and evolutionary microbiology*, 70(1), 668-674.
- 16. Giovannoni, S. J., & Stingl, U. (2005). Molecular diversity and ecology of microbial plankton. *Nature*, *437*(7057), 343-348
- 17. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A.,
 295 ... & Smith, H. O. (2004). Environmental genome shotgun sequencing of the Sargasso
 296 Sea. *science*, 304(5667), 66-74
- 18. Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph,
 S., & Venter, J. C. (2007). The Sorcerer II global ocean sampling expedition:
 northwest Atlantic through eastern tropical Pacific. *PLoS Biol*, 5(3), e77.
- 19. Menaa, Farid, P. A. U. I. Wijesinghe, Gobika Thiripuranathar, Bushra Uzair, Haroon
 Iqbal, Barkat Ali Khan, and Bouzid Menaa. 2020. "Ecological and Industrial

284

285

286

- Implications of Dynamic Seaweed-Associated Microbiota Interactions." *Marine Drugs* 18(12):1–25. doi: 10.3390/md18120641.
- 20. Burke, Catherine, Torsten Thomas, Matt Lewis, Peter Steinberg, and Staffan
 Kjelleberg. 2011. "Composition, Uniqueness and Variability of the Epiphytic Bacterial
 Community of the Green Alga Ulva Australis." *ISME Journal* 5(4):590–600. doi:
 10.1038/ismej.2010.164.
- 21. Ponni Keerthana, K., S. Radhesh Krishnan, S. Ragunath Sengali, R. Srinivasan, N.
 Prabhakaran, G. Balaji, M. Gracy, and K. Latha. 2019. "Microbiome Digital Signature of MCR Genes an in Silico Approach to Study the Diversity of Methanogenic Population in Laboratory-Developed and Pilot-Scale Anaerobic Digesters." *Access Microbiology* 1(5). doi: 10.1099/acmi.0.000044.
- 22. Khan, W., Rayirath, U.P., Subramanian, S. *et al.* Seaweed Extracts as Biostimulants of Plant Growth and Development. *J Plant Growth Regul* 28, 386–399 (2009).
 https://doi.org/10.1007/s00344-009-9103-x
- 23. Atashpaz, Sina, Sajjad Khani, Abolfazl Barzegari, Jaleh Barar, Sepideh Zununi Vahed,
 Reza Azarbaijani, and Yadollah Omidi. 2010. "A Robust Universal Method for
 Extraction of Genomic DNA from Bacterial Species." *Microbiology* 79(4):538–42. doi:
 10.1134/S0026261710040168.
 - 24. Donate-Correa, Javier, Milagros León-Barrios, and Ricardo Pérez-Galdona. 2005. "Screening for Plant Growth-Promoting Rhizobacteria in Chamaecytisus Proliferus (Tagasaste), a Forage Tree-Shrub Legume Endemic to the Canary Islands." *Plant and Soil* 266(1–2):261–72. doi: 10.1007/s11104-005-0754-5.
 - 25. Naureen, Zakira, Muhammad Aqeel, Muhammad Nadeem Hassan, Syed Abdullah Gilani, Nahla Bouqellah, Fazal Mabood, Javid Hussain, and Fauzia Y. Hafeez. 2015. "Isolation and Screening of Silicate Bacteria from Various Habitats for Biological Control of Phytopathogenic Fungi." *American Journal of Plant Sciences* 06(18):2850–59. doi: 10.4236/ajps.2015.618282.
 - 26. Vazquez, P., G. Holguin, M. E. Puente, A. Lopez-Cortes, and Y. Bashan. 2000. "Phosphate-Solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon." *Biology and Fertility of Soils* 30(5–6):460–68. doi: 10.1007/s003740050024.
 - 27. Houari, Abdelaziz El, Magali Ranchou-Peyruse, Anthony Ranchou-Peyruse, Rhizlane Bennisse, Radia Bouterfas, Maria Soledad Goni Urriza, Abdel-Ilah Qatibi, and Rémy Guyoneaud. 2020. "Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters From." *Processes* 8(1284):1–22.

Funding Information:

The research project was funded by T.Stanes and company limited, Coimbatore.

339 Acknowledgment:

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

- We acknowledge Dr.Brindha (Microbiologist, T. Stanes and Company Limited) for proof-
- reading the manuscript.
- 342 Conflicts of interest:
- The authors declare that there are no conflicts of interest.