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Abstract 

Queueing theory has a wide range of applications in engineering and in the sciences. Jackson networks are a widely studied class 

of queueing systems, with applications in models of machine repair, communication and in computer networks. Real world data 

is imprecise, and thus there is an intrinsic fuzziness associated with the data. This fuzziness is resolved through the use of fuzzy 

theoretic techniques. In this paper, we study cyclic queueing systems, a special class of Jackson networks, in fuzzy environments, 

wherein the data is intrinsically imprecise. We propose a solution procedure that enables one to arrive at the fuzzified 

performance measures of such systems. The analysis is effectively reduced to that of an optimization problem, which lies under 

the purview of parametric nonlinear programming. We also use the Yager ranking index to arrive at the equivalent crisp 

performance measures. A numerical example is solved to illustrate the solution procedure. 

 

Keywords: Jackson networks, cyclic queues, parametric nonlinear programming, fuzzy sets; 

1. Introduction 

The theory of fuzzy sets and logic was first conceived of by Lotfi A. Zadeh in 1965 [7]. He extended the concepts of 

classical set theory to account for uncertainty and vagueness in data and laid the foundations of modern fuzzy set 

theory. A considerable and significant development of the subject was due to Zadeh himself. This theory is now 

applied to a wide range of scientific areas to model uncertainty in data.  

Other significant researchers in this area include Dubois and Prade [16], Kaufmann [20], Mizumoto and Tanaka 

[17], Nakamura [19] etc. Applications include areas like control systems, statistics, pattern classification, neural 

networks, communication, queueing systems and so on.  

Our focus is on using the methods of fuzzy set theory to analyze queueing systems. Queueing theory studies 

queues from a probabilistic point of view. Service times and arrival times are assumed to follow probability 

distributions. In the fuzzy analysis of such systems, the intrinsic fuzziness in the parameters of these probability 

distributions are taken into account. Notable papers in this area include those by Li and Lee [6], Negi and Lee [5] 

and Buckley et al. [4]. Various techniques have been employed to analyze queueing systems in fuzzy environments, 

including the traditional α-cut arithmetic, the Dong-Shah-Wong algorithm [14], LR arithmetic [15] and parametric 

nonlinear programming. Kao et al. and Chen et al. use parametric nonlinear programming techniques to analyze 

fuzzy queues in [11] and [1]. Mukeba et al. in [18] use LR arithmetic in their analysis of the fuzzy M/M/1 queue. 

In this paper, we analyze a special class of queueing systems called cyclic queueing systems, in fuzzy 

environments. We effectively reduce the analysis to that of solving a pair of parametric nonlinear programs. Finally, 

we use the Yager ranking index to defuzzify the fuzzy output.  

The overview of this paper is as follows. Sec. 2 discusses necessary preliminaries. Sec. 3 defines trapezoidal 

fuzzy numbers. Sec. 4 describes the queueing model in discussion – cyclic queues, in brief. Sec. 5 describes our 

solution procedure, and Sec. 6 validates the solution procedure by means of an example. Sec. 7 concludes the study. 

2. Preliminaries 

2.1. Fuzzy set-theoretic definitions 

A fuzzy set [2]  𝑨  is an ordered pair  𝑿, 𝑨 , consisting of a set 𝑿 that we shall refer to as the universe (or the domain 

of discourse), and a function 𝑨 : 𝑿 →  𝟎, 𝟏 , called its membershipfunction, that maps the universe into the interval 
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 𝟎, 𝟏 . This map induces a measure of membership in the fuzzy set 𝑨 , on the elements of the universe 𝑿. For each 

𝒙 ∈ 𝑿, its image 𝑨 𝒙 ∈  𝟎, 𝟏  is called its degree of membership (or its membership grade) in 𝑨 . 

We also say that 𝐴  is a fuzzy subset of 𝑋 if its universe is 𝑋. There are several useful crisp sets associated with a 

fuzzy set 𝐴  that one finds useful. The weak 𝛼-cuts (also written alpha cuts) of 𝐴 are subsets of the universe, defined 

by 

𝐴 𝛼 ∶=  𝑥   𝑥 ∈ 𝑋 and 𝛼 ≤ 𝐴 𝑥  ⊆ 𝑋 for each 𝛼 ∈  0,1  

The term 𝛼-cut is used to refer to the corresponding weak𝛼-cut. Analogously, the strong 𝛼-cuts are defined by 

𝑨 𝜶+ ∶=  𝒙 𝒙 ∈ 𝑿 and 𝜶 < 𝑨 𝒙  ⊆ 𝑿,  for each 𝜶 ∈  𝟎, 𝟏  

The support and core of 𝐴 , denoted supp 𝐴  and core 𝐴  respectively, are special 𝛼-cuts. They are defined as  

supp 𝐴 = 𝐴 0+ and   core𝐴 = 𝐴 1  

The heightℎ of a fuzzy set is defined by 

ℎ 𝐴  ∶= sup
𝑋

 𝐴  

A normal fuzzy set is one whose height is equal to one. 

A fuzzy set is called convex if and only if all its weak α-cuts are convex sets. Equivalently, one can show that the 

fuzzy set 𝐴  is convex iff 

for all  𝑡 ∈  0,1   and  𝑢, 𝑣 ∈ 𝑋, 𝐴 𝑡𝑢 +  1 − 𝑡 𝑣 ≥ min 𝐴 𝑢 , 𝐴 𝑣  . 

2.2. Zadeh’s extension principle 

Let 𝒇 be a real valued function of 𝒏 real variables, i.e., 𝒇 is a map of ℝ𝒏 into ℝ. The fuzzy extension of 𝒇 is defined 

as the map that is extended to admit real fuzzy inputs to produce a fuzzy set as output. To be more precise, suppose 

that 𝑨 𝟏, 𝑨 𝟐, ⋯ , 𝑨 𝒏 are the fuzzy inputs to 𝒇. These are fuzzy subsets of ℝ. Write 𝑩 = 𝒇 𝑨 𝟏, 𝑨 𝟐, ⋯ , 𝑨 𝒏 , where 𝑩  is 

also a fuzzy subset of ℝ (in this paper, we shall not distinguish symbolically between a crisp function 𝒇and its fuzzy 

extension, for brevity).  

Zadeh [2, 8] defines the fuzzy extension through his extension principle by
 

𝑩 𝒚 = 𝐬𝐮𝐩  𝐦𝐢𝐧
𝟏≤𝒊≤𝒏

𝑨𝒊 𝒙𝒊  | 𝒇 𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏 = 𝒚, where each 𝒙𝒊 ∈ ℝ , for all 𝒚 ∈ ℝ. 

with the understanding that 𝐬𝐮𝐩 ∅ = 𝟎. 

2.3. Fuzzy numbers 

Fuzzy numbers [2, 15] are fuzzy subsets of the real line ℝ with special properties. 𝑨  is called a fuzzy number if 

(i) 𝐴  has bounded support, and is normal 

(ii) All of its weak α-cuts are closed intervals in ℝ for 𝛼 ∈  (0,1] . 

Fuzzy numbers are convex fuzzy sets. This immediately follows from (ii) above, since intervals are convex. 

2.4. Operations on fuzzy numbers 

We use the notation that was developed earlier in Sec. 2.2. We now suppose thatfis a continuous map and that the 

inputs to 𝑓 are fuzzy numbers rather than fuzzy sets. In principle,Zadeh’s extension principle can be used, but it is 

extremely difficult to use and implement. Thus, we resort to a different approach which is much easier to implement. 

This result is due to Buckley and Qu [12] and uses weak α-cuts. Assume that the fuzzy inputs 𝐴 1, 𝐴 2, ⋯ , 𝐴 𝑛  to 𝑓 are 

fuzzy numbers. Write 𝐵 = 𝑓 𝐴 1, 𝐴 2, ⋯ , 𝐴 𝑛 . Then, the fuzzy set 𝐵  is a fuzzy number, with 

𝐵 𝛼 =   𝑏 ∈ ℝ | 𝑏 = 𝑓(𝑎1 , 𝑎2, ⋯ , 𝑎𝑛) with𝑎𝑖 ∈ 𝐴 𝑖
𝛼 for each 𝑖  , for 0 < 𝛼 ≤ 1. 
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This result enables us to carry out a wide variety of operations on fuzzy numbers, in general. For instance, one 

can derive formulae for simple binary operations on fuzzy numbers. 

3. Trapezoidal Fuzzy Numbers 

A trapezoidal fuzzy number 𝑇  [15] is one whose membership function takes the form 

𝑇 𝑥 =

 
 

 
𝑥−𝑡1

𝑡2−𝑡1
    for 𝑡1 ≤ 𝑥 ≤ 𝑡2

1        for 𝑡2 ≤ 𝑥 ≤ 𝑡3
𝑡4−𝑥

𝑡4−𝑡3
    for 𝑡3 ≤ 𝑥 ≤ 𝑡4

 , and zero otherwise 

for real numbers 𝑡𝑖 ∈ ℝ, 𝑖 ∈  1,2,3,4 , with 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4 .  It is customary to denote 𝑇 =  𝑡1, 𝑡2, 𝑡3, 𝑡4  for 

purposes of brevity. If 𝑡2 = 𝑡3, 𝑇  is called a triangular fuzzy number.  

 

It immediately follows from the definition of𝑇 that supp 𝑇 =  𝑡1, 𝑡4  and thatcore 𝑇 =  𝑡2, 𝑡3 . It is also easy to 

show that the α-cut of 𝑇  is given by  

𝑇 𝛼 =  𝑡1 +  𝑡2 − 𝑡1 𝛼, 𝑡4 −  𝑡4 − 𝑡3 𝛼  for 𝛼 ∈  0,1  

4. (Fuzzy) Cyclic queueing networks 

4.1. Basic description 

The (fuzzy) queueing system that we shall deal with in this paper is a special type of a Jackson network (see Gross 

et al., [3]). Loosely speaking, a Jackson network is a collection of 𝑁 ≥ 1nodes, where each node represents a service 

facility. Each service facility can consist of multiple servers, say 𝑠𝑖  servers at node 𝑖 for 1 ≤ 𝑖 ≤ 𝑁. Customers can 

arrive at any node and depart from any node, traversing from one node to another along the way. There are no 

restrictions on the paths that the customers can take in the most general case. The service discipline that the queues 

follow is first-come, first-served (FCFS). Arrivals from outside the network are assumed to be Poisson, and service 

times (also called holding times) at nodes are assumed to be exponentially distributed.  

The special type of a Jackson network in which no customer can enter from outside the system is referred to as a 

closed Jackson network. These systems possess a prescribed and fixed number of customers. Closed Jackson 

networks in which customers traverse from node to node in a sequential and circular fashion are called cyclic 

queues. 

We shall restrict ourselves to cyclic queues that consist of two nodes with 𝑠𝑖 = 1 for each 𝑖. Furthermore, we 

assume that there are 𝐶 customers in the system and that service facility 𝑖 functions at rate 𝜇𝑖  (service times are 

exponentially distributed as stated before) with 𝜇1 ≠ 𝜇2. 
The performance measures of this queueing system are already known in the literature (see Bolch et al., [13]), 

and we state them in the next section without proof. 

4.2. Relevant Results 

We denote the expected number of customers at node 𝑖  in steady state by 𝐶𝑖
𝑆𝑆 . We also write𝑤 =

𝜇1

𝜇2
≠ 1 

for brevity. It has been established that (see [13]) 

𝐶1
𝑆𝑆 𝜇1, 𝜇2 =

𝐶 + 1

1 − 𝑤𝐶+1
−

1

1 − 𝑤
 

𝐶2
𝑆𝑆 𝜇1, 𝜇2 =

𝑤

1 − 𝑤
−

(𝐶 + 1)𝑤𝐶+1

1 − 𝑤𝐶+1
 

Evidently, 𝐶1
𝑆𝑆 + 𝐶2

𝑆𝑆 = 𝐶  as anticipated. It is important to observe that these quantities depend on the rates 

𝜇𝑖only through their ratio, 𝑤.  We shall make extensive use of this fact in the coming section. 
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These quantities describe the performance and efficiency of the system, and hence are referred to as its 

performance measures. Our goal now is to extend these formulae to fuzzy environments, where the rates 𝜇𝑖  are 

intrinsically fuzzy in nature.  

5. Solution procedure 

In our analysis, we shall model the two service rates as fuzzy numbers. Henceforth, we shall denote these quantities 

by 𝜇 1  and 𝜇 2  respectively. As stated before, the performance measures of the system in question when all the 

variables are crisp depend only on these rates. Moreover, this dependence is only through the ratio of the rates, 

𝑤 ∶= 𝜇 1/𝜇 2. We also demand that 1 ∉ supp 𝑤 . 

Let 𝑞  denote the (fuzzified) performance measure which is of interest to us. Our objective is to propagate 

fuzziness in the input fuzzy quantities, viz. the rates, to the output, viz. the performance measure of interest, using 

the function that relates them. Equivalently, given membership functions 𝜇𝑖  of the rates 𝜇 𝑖 , 𝑖 = 1,2 , we must 

construct the membership function 𝑞 of 𝑞 . 

In principle, Zadeh’s extension principle enables us to do this. We denote the function that relates the 

performance measure of interest and the service rates by 𝑔. Clearly, 𝑔 is a real valued function of two real variables. 

The extension principle yields 

𝑞(𝑦) = sup min 𝜇1(𝑥1), 𝜇2(𝑥2)  | 𝑦 = 𝑔(𝑥1 , 𝑥2),   𝑥1 , 𝑥2 ∈ ℝ  for all 𝑦 ∈ ℝ 

with the understanding that 𝑠𝑢𝑝 ∅ = 0. Evidently, this equation is tremendously difficult to use and implement. 

Therefore, we appeal to the result due to Buckley and Qu outlined in Sec. 2.4. We then immediately have   

𝑞 𝛼 =  𝑦 = 𝑔(𝑥1 , 𝑥2) | 𝑥1 ∈ 𝜇 1
𝛼  and 𝑥2 ∈ 𝜇 2

𝛼   for 0 < 𝛼 ≤ 1 

where 𝑞  is also a fuzzy number. It turns out that this equation serves our need very well. We can make one further 

simplification using the fact that 𝑔(𝑥1 , 𝑥2) depends only on  𝑥1/𝑥2 . Define the real valued map 𝑓 (of a single real 

variable) by 𝑓 𝑥1/𝑥2 = 𝑔 𝑥1, 𝑥2  for all 𝑥1 , 𝑥2 ∈ ℝ. Essentially, the expression for 𝑓 , viz. 𝑓(𝑥) is obtained by 

replacing every occurrence of  𝑥1/𝑥2  in the expression 𝑔 𝑥1 , 𝑥2  by 𝑥 . Now, with 𝑤 = 𝜇 1/𝜇 2 , the previous 

equation becomes 

𝑞 𝛼 =  𝑦 = 𝑓(𝑥) | 𝑥 ∈ 𝑤 𝛼  = 𝑓 𝑤 𝛼   for 0 < 𝛼 ≤ 1 

where 𝑓 𝐴 , for 𝐴 ⊆ ℝ, denotes the image of 𝐴 under 𝑓.  

Henceforth, we shall assume that 𝛼 ∈  (0,1] . On the other hand, since 𝑞  is a fuzzy number, 𝑞 𝛼  is a closed interval 

in ℝ. Thus, we can write 𝑞 𝛼 =  𝑞𝛼
𝐿 , 𝑞𝛼

𝑈 , where 

𝑞𝛼
𝐿  = min 𝑞 𝛼 = min 𝑥 ∈ ℝ | 𝑞(𝑥) ≥ 𝛼  

𝑞𝛼
𝑈 = max 𝑞 𝛼 = max 𝑥 ∈ ℝ | 𝑞(𝑥) ≥ 𝛼  

We can also write similar equations for the service rates and their ratio. We have 𝜇 1
𝛼 =  𝜇1,𝛼

𝐿 , 𝜇1,𝛼
𝑈   and 𝜇 2

𝛼 =
 𝜇2,𝛼

𝐿 , 𝜇2,𝛼
𝑈  , where 𝜇𝑖,𝛼

𝐿 = min 𝜇 𝑖
𝛼  and 𝜇𝑖,𝛼

𝑈 = max 𝜇 𝑖
𝛼  for each 𝑖 , and 𝑤 𝛼 =  𝑤𝛼

𝐿 , 𝑤𝛼
𝑈 , where 𝑤𝛼

𝐿 = min 𝑤 𝛼  

and𝑤𝛼
𝑈 = max 𝑤 𝛼 . Since the service rates are not dependent on each other, we can use standard binary interval 

analysis to write  

𝑤𝛼
𝐿 =

𝜇1,𝛼
𝐿

𝜇2,𝛼
𝑈   and   𝑤𝛼

𝑈 =
𝜇1,𝛼

𝑈

𝜇2,𝛼
𝐿  

Putting everything together, we arrive at the following. 

𝑞𝛼
𝐿 = min  𝑦 = 𝑓(𝑥) | 𝑥 ∈ w 𝛼   

      =  min 𝑓(𝑥) 
            subject to 𝑥 ∈ w 𝛼  

𝑞𝛼
𝑈 = max   𝑦 = 𝑓(𝑥) | 𝑥 ∈ w 𝛼   

      =  max𝑓(𝑥) 
            subject to 𝑥 ∈ w 𝛼  

Equivalently, we can write  
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𝑞𝛼
𝐿  = min 𝑓(𝑥) 

           subject to 𝑤𝛼
𝐿 ≤ 𝑥 ≤ 𝑤𝛼

𝑈  
      =  min

w 𝛼
 𝑓 

𝑞𝛼
𝑈  = max 𝑓(𝑥) 

           subject to 𝑤𝛼
𝐿 ≤ 𝑥 ≤ 𝑤𝛼

𝑈  
      =  max

w 𝛼
 𝑓 

We have reduced the problem of determining the map 𝑞 to an optimization problem. It suffices to solve the above 

pair of parametric nonlinear programs. Indeed, these are parametric nonlinear programs since the objective function 

𝑓 is, in general, nonlinear in its argument, and the feasible region is parametrized by a confidence level𝛼 ∈  (0,1] . 
Since 𝑓 is continuous on  0,1  and  1,∞ , and since the feasible region is a closed interval that is strictly included in 

exactly one of the above intervals, the extreme value theorem guarantees that the above parametric nonlinear 

programs are solvable in the real numbers. 

We also remark that the same procedure applies to performance measures that depend on the two variables 

independently. The parametric nonlinear programs would then involve two decision variables rather than one. 

We also define 𝑞0
𝐿  and  𝑞0

𝑈 as the numbers obtained by substituting zero for 𝛼 in the expressions for 𝑞𝛼
𝐿  and 𝑞𝛼

𝑈  

that are obtained as the solutions to the programs. These numbers are the endpoints of the support of the fuzzy 

number 𝑞 . 

It is easily seen that the collection of alpha cuts of any fuzzy set possess a nested structure, i.e. for any fuzzy set 

𝐴  and for real numbers 0 ≤ 𝛼 < 𝛽 ≤ 1, we have that 𝐴 ⊆
𝛽

𝐴 𝛼 . For fuzzy numbers, this inclusion is necessarily 

strict. In particular, for the fuzzy number 𝑞 , we have  

𝑞 
𝛽

=  𝑞𝛽
𝐿 , 𝑞𝛽

𝑈 ⊂  𝑞𝛼
𝐿 , 𝑞𝛼

𝑈 = 𝑞 𝛼  

Consider the maps 𝛼 ↦ 𝑞𝛼
𝐿  and 𝛼 ↦ 𝑞𝛼

𝑈 . These are strictly increasing and strictly decreasing maps respectively, 

and therefore are injective. Thus, one can talk of their inverses, defined on their respective ranges. These inverses 

𝐿 ∶  𝑞0
𝐿 , 𝑞1

𝐿 →  0,1  and 𝑅 ∶  𝑞1
𝑈 , 𝑞0

𝑈 →  0,1  constitute the membership function of the fuzzy performance measure 

𝑞 . Indeed, we have that 

𝑞 𝑥 =   

𝐿 𝑥 ,      𝑞0
𝐿 ≤ 𝑥 ≤ 𝑞1

𝐿

    1,           𝑞1
𝐿 ≤ 𝑥 ≤ 𝑞1

𝑈

𝑅 𝑥 ,      𝑞1
𝑈 ≤ 𝑥 ≤ 𝑞0

𝑈

 , and zero otherwise. 

Analytic closed-form expressions for the functions 𝐿 and 𝑅 are not always possible to obtain. On the other hand, 

observe that the collection of intervals 

  𝑞𝛼
𝐿 , 𝑞𝛼

𝑈  |  𝛼 ∈  0,1   

can be used to obtain the graph of the map 𝑞. A finite set of these intervals can be used to arrive at an approximate 

plot of the membership function. 

Oftentimes, one is not interested in the membership function of the fuzzy performance measure, but rather is 

interested in working with a crisp value that is representative of the profile of the membership function. This is 

called defuzzification, and there are a wide range of defuzzification techniques available in the literature [10]. In this 

paper, we use the defuzzification scheme motivated by the Yager ranking index [9] for ordering fuzzy numbers. The 

Yager ranking index of a fuzzy number 𝐴 , denoted 𝜇 𝐴  , is defined by the equation 

𝜇 𝐴  =   
𝐴𝛼

𝐿 + 𝐴𝛼
𝑈

2
  d

1

0

𝛼 

where  𝐴𝛼
𝐿 , 𝐴𝛼

𝑈  is the alpha cut of 𝐴 . 
Finally, we defuzzify the fuzzy performance measures of the cyclic queue in discussion using the Yager ranking 

index, for practical use. 

In the next section, we illustrate the solution procedure by means of an example. 
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6. Numerical Example  

We shall assume that the number of customers 𝐶 in the system is 𝐶 = 5. Further, we assume that the two fuzzy 

rates of service, 𝜇 1 and 𝜇 2, are trapezoidal fuzzy numbers with values 𝜇 1 =  9,10,11,12  and 𝜇 2 =  3,4,5,6 . Their 

corresponding alpha cuts (cf. Sec. 3) are 

𝜇 1 =  9 + 𝛼, 12 − 𝛼 𝛼 ,    𝜇 2 =  3 + 𝛼, 6 − 𝛼 𝛼  

for 0 < 𝛼 ≤ 1. Using the notation that was set up in the last section, we have 

 𝜇1 𝛼
𝐿 = 9 + 𝛼,  𝜇1 𝛼

𝑈 = 12 − 𝛼  and   𝜇2 𝛼
𝐿 = 3 + 𝛼,  𝜇2 𝛼

𝑈 = 6 − 𝛼 

Now, the alpha cut of the ratio of these fuzzy rates, 𝑤 , is given by  

𝑤 =  
9 + 𝛼

6 − 𝛼
,
12 − 𝛼

3 + 𝛼
 𝛼  ⟹  𝑤𝛼

𝐿 =
9 + 𝛼

6 − 𝛼
,  𝑤𝛼

𝑈 =
12 − 𝛼

3 + 𝛼
 

The fuzzy performance measures that we shall determine are the mean number of customers in the first service 

station and in the second service station, 𝐶 1
𝑆𝑆and 𝐶 2

𝑆𝑆 , respectively. Denote by 𝑓𝑖 , the crisp function that relates the 

ratio of the service rates 𝑥 with the mean number of customers in service station 𝑖. Then, we have  

𝑓1 𝑥 =
6

1 − 𝑥6
−

1

1 − 𝑥
 

𝑓2 𝑥 =
𝑥

1 − 𝑥
−

6𝑥6

1 − 𝑥6
 

We are to construct the membership functions 𝐶1
𝑆𝑆  and 𝐶2

𝑆𝑆  of the performance measures. From the results 

established in the previous section, we know that the alpha cuts of the two performance measures can be obtained as 

solutions to a pair of parametric nonlinear programs. They are given by (henceforth, 0 < 𝛼 ≤ 1) 

 

 𝐶1
𝑆𝑆 𝛼

𝐿  =  min  𝑓1(𝑥) 𝐶1
𝑆𝑆 𝛼

𝑈  =  max  𝑓1(𝑥) 
                    subject to 𝑤𝛼

𝐿 ≤ 𝑥 ≤ 𝑤𝛼
𝑈                                     subject to 𝑤𝛼

𝐿 ≤ 𝑥 ≤ 𝑤𝛼
𝑈  

              =  min  
6

1 − 𝑥6
−

1

1 − 𝑥
                                   =  max  

6

1 − 𝑥6
−

1

1 − 𝑥
  

                    subject to 
9 + 𝛼

6 − 𝛼
≤ 𝑥 ≤

12 − 𝛼

3 + 𝛼
                       subject to 

9 + 𝛼

6 − 𝛼
≤ 𝑥 ≤

12 − 𝛼

3 + 𝛼
 

 

 𝐶2
𝑆𝑆 𝛼

𝐿  =  min  𝑓2(𝑥) 𝐶2
𝑆𝑆 𝛼

𝑈  =  max  𝑓2(𝑥) 
                    subject to 𝑤𝛼

𝐿 ≤ 𝑥 ≤ 𝑤𝛼
𝑈                                     subject to 𝑤𝛼

𝐿 ≤ 𝑥 ≤ 𝑤𝛼
𝑈  

              =  min  
𝑥

1 − 𝑥
−

6𝑥6

1 − 𝑥6
                                   = max  

𝑥

1 − 𝑥
−

6𝑥6

1 − 𝑥6
  

                    subject to 
9 + 𝛼

6 − 𝛼
≤ 𝑥 ≤

12 − 𝛼

3 + 𝛼
                      subject to 

9 + 𝛼

6 − 𝛼
≤ 𝑥 ≤

12 − 𝛼

3 + 𝛼
 

 

We define 𝛬 𝛼 ∶=  
9+𝛼

6−𝛼
,

12−𝛼

3+𝛼
  = 𝑤 𝛼   for purposes of brevity. This is the feasible region of the parametric 

nonlinear programs. We also observe that 𝛬 𝛼 ⊆  1.5,4 . 

Essentially, these programs are global single variable optimization problems, and it turns out that tools from 

single variable calculus suffice to determine their solutions. The use of a computing utility like MATLAB R2020a 

reveals the following features of the functions 𝑓1 and  𝑓2, that we shall exploit. 

1. The first derivative of the function 𝑓1 takes only negative values on  1.5,4 ⊇ 𝛬 𝛼 . It follows that 𝑓1 is strictly 

decreasing on 𝛬 𝛼 . 

2. The first derivative of the function 𝑓2 takes only positive values on  1.5,4 ⊇ 𝛬 𝛼 . It follows that 𝑓2 is strictly 

increasing on 𝛬 𝛼 . 

Thus, 𝑓1 𝑥  attains its maximum and minimum values on 𝛬 𝛼  at the points 
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𝑥 =
9 + 𝛼

6 − 𝛼
     and     𝑥 =

12 − 𝛼

3 + 𝛼
 

respectively. Similarly, 𝑓2 𝑥  attains its maximum and minimum values on 𝛬 𝛼  at the points 

𝑥 =
12 − 𝛼

3 + 𝛼
     and     𝑥 =

9 + 𝛼

6 − 𝛼
 

for 0 < 𝛼 ≤ 1. Thus, the alpha cuts of the two performance measures are  

𝐶 1
𝑆𝑆𝛼 =  𝑓1  

12 − 𝛼

3 + 𝛼
 , 𝑓1  

9 + 𝛼

6 − 𝛼
       and   𝐶 2

𝑆𝑆𝛼 =  𝑓2  
9 + 𝛼

6 − 𝛼
 , 𝑓2  

12 − 𝛼

3 + 𝛼
   

which simplify to 

𝐶 1
𝑆𝑆𝛼 =  

3 + 𝛼

9 − 2𝛼
−

6 3 + 𝛼 6

 12 − 𝛼 6 −  3 + 𝛼 6
,   

6 − 𝛼

3 + 2𝛼
−

6 6 − 𝛼 6

 9 + 𝛼 6 −  6 − 𝛼 6
  

𝐶 2
𝑆𝑆𝛼 =  

6 9 + 𝛼 6

 9 + 𝛼 6 −  6 − 𝛼 6
−

9 + 𝛼

3 + 2𝛼
,   

6 12 − 𝛼 6

 12 − 𝛼 6 −  3 + 𝛼 6
−

12 − 𝛼

9 − 2𝛼
  

Now, it remains to construct the membership functions associated with the performance measures. To this end, we 

determine the collection of intervals  

  𝑝𝛼
𝐿 , 𝑝𝛼

𝑈  |  𝛼 ∈  0.0,0.1, ⋯ ,1.0   

for 𝑝 = 𝐶1
𝑆𝑆  and 𝐶2

𝑆𝑆 ,using the expressions obtained for the alpha cuts using the parametric nonlinear programs. 

These intervals can then be used for interpolation. Here, we have chosen eleven values for alpha that are equally 

spaced, and the intervals for each of these confidence levels have been calculated. The results are tabulated in Table 

1. 

 

Table 1: Results 

 

   𝐶1
𝑆𝑆 𝛼

𝐿 ,  𝐶1
𝑆𝑆 𝛼

𝑈    𝐶2
𝑆𝑆 𝛼

𝐿 ,  𝐶2
𝑆𝑆 𝛼

𝑈  

𝛼 = 0.0  0.3319, 1.4226   3.5774, 4.6681  

𝛼 = 0.1  0.3504, 1.3623   3.6377, 4.6496  

𝛼 = 0.2  0.3697, 1.3040   3.6960,4.6303  

𝛼 = 0.3  0.3898, 1.2475   3.7525, 4.6102  

𝛼 = 0.4  0.4108, 1.1929   3.8071, 4.5892  

𝛼 = 0.5  0.4327, 1.1402   3.8598, 4.5673  

𝛼 = 0.6  0.4556, 1.0894   3.9106, 4.5444  

𝛼 = 0.7  0.4794, 1.0405   3.9595, 4.5206  

𝛼 = 0.8  0.5043, 0.9935   4.0065, 4.4957  

𝛼 = 0.9  0.5304, 0.9482   4.0518, 4.4696  

𝛼 = 1.0  0.5575, 0.9048   4.0952, 4.4425  

 

Now, one can use interpolation techniques on these intervals (in Table 1) and arrive at approximate plots of the 

membership functions. Here, we have used MATLAB R2020b (and linear interpolation) to arrive at the graphs (Fig. 

1, 2) of the membership functions of the performance measures. 
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Fig. 1: Graph of the map 𝐶1
𝑆𝑆                                      Fig. 2: Graph of the map 𝐶2

𝑆𝑆  

For practical use, these fuzzy memberships are often defuzzified into crisp values using various defuzzification 

techniques. In this paper, we use the defuzzification method induced by the Yager ranking index (cf. Sec. 5). Using 

the notation that was set up earlier, we have  

𝜇 𝐶 1
𝑆𝑆 =  

 𝐶1
𝑆𝑆 𝛼

𝐿 +  𝐶1
𝑆𝑆 𝛼

𝑈

2
 d𝛼

1

0

    and    𝜇 𝐶 2
𝑆𝑆 =  

 𝐶2
𝑆𝑆 𝛼

𝐿 +  𝐶2
𝑆𝑆 𝛼

𝑈

2

1

0

 d𝛼 

Using the expressions for the alpha cuts and a computing utility (MATLAB R2020a), we arrive at the following 

defuzzified values for the expected number of customers in each of the two service stations. 

𝜇 𝐶 1
𝑆𝑆 =  0.7924   and    𝜇 𝐶 2

𝑆𝑆 = 4.2076 

This data is extremely useful in the design of efficient queueing systems. 

7. Conclusion 

Cyclic queueing systems are used to model various production and service industry problems – ship operations, 

underground coal mining and machine repair, to name a few. Other applications are in the areas of communication 

networks, computer time-sharing and multiprogramming systems. This paper discusses the analysis of such systems, 

taking into account the fact that real world data is imprecise, and reduces the problem of determining various 

characteristics associated with such systems into optimization problems that are well studied in the literature, 

namely parametric nonlinear programs. The solutions to these programs are also shown to exist. Moreover, a 

defuzzification scheme is used to obtain crisp values for practical use. This analysis can easily be extended to 

include a wider class of queueing systems. Also, any arbitrary function of the system rates can be fuzzified using a 

procedure very similar to the one described in the paper. The data that is obtained through the analysis is extremely 

useful in the design of efficient queueing systems. 
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