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ABSTRACT  

In this paper, the authors aim to discuss a special ecosystem with constant rates of mortality and harvesting 

for Ammensal Species. Local stability is established at interior equilibrium point. Spatiotemporal Analysis 

has been carried out. Global stability is identified at the interior point. The impact of diffusion on this model 

is traced. 
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1. Introduction 

 

 Biomathematics, also called as mathematical biosciences, is a multidisciplinary field with a wide and 

exponentially increasing literature distributed across the last century through numerous disciplines. 

Mathematicians, physicists, computational scientists, ecologists, medical scientists, demographers, several 

researchers have made contributions to it. In mathematical biosciences, the main aim is to gain an overview 

and better understanding about the challenges of real life. For the last few decades, Mathematicians research 

the merits and demerits of mathematical simulation, mathematical techniques. It has been the foundation of 

the modern growth of scientific research. 

Mathematical modelling in the modern sciences of real life situations is an effort in the language of 

mathematics to define and explain certain instances of everyday life. Although the reach of mathematical 

modelling is in many sectors expanding and deepening, it is not only confined to the usage of already proven 

mathematical techniques. It is very important to notice that one of the main tasks of mathematicians 

employed in fields such as life, medical and social sciences is to create new mathematical strategies that deal 

with complicated problems that exist in nature and in our routine as well. Situations are also very difficult in 

life sciences. As such, before attempting to devise a new mathematical model, one must have some 

experience regarding the scenario. If a model is formulated, by using an appropriate mathematical technique, 

the effects may be noticed and the findings are contrasted. Further modifications to the model are indicated 

by the inconsistencies between theoretical assumptions centered on the model and real life observations. 

K.V.L.N.Acharyulu and N.Ch.Pattabhi Ramacharyulu examined different cases of ecological 

Ammensal models [5-18] and also investigated various ecological models for their stability in manifold 

dimensions. Many Research scholars [1-4] and Mathematicians[19-31] extended their significant 

contributions in this modelling field. 

A real life problem may seldom be converted into a mathematical problem with all its generality. 

Even though it can be converted in such a way, it might not be feasible to satisfactorily solve the resulting 

mathematical problem. Therefore, it will be appropriate to 'simplify' or 'idealize' or 'approximate' the 

problem with another problem, taken as a relevant model of the initial problem and mathematically 

interpreted and solved at the same time. All the basic characteristics of the issue will be kept in this 
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idealisation phase, giving up those characteristics that are not inevitable or so relevant to the condition under 

investigation. 

 

1.1 Notations: 

This is an evolutionary environment where Ammensal and Enemy species live together. It is believed that 

all interacting ecological species are continuously harvested (migrated or immigrated) by depending upon 

available natural resources with constant mortality rate. Here 

(i).X is the density of Ammensal species with natural growth rate a1, 

(ii).Y is the density of the enemy species with natural growth rate a2, 

(iii).h1=a11H1 is the harvesting of Ammensal species,  

(iv). i
i

ii

a
K

a
= be the carrying capacity of Ammensal Species . 

(v). 12

11

a

a
 = be Ammensalism's coefficient.  

(vi).m= Decrease of Ammensal species due to harvesting. 

Assume that the parameters described above are positive.  

 2. Constriction of Mathematical Model 

The equations for the special ecosystem are presented as below: 

The rate of the growth for Ammensal Species with constant rates of mortality and harvesting 

  
2

11 1 1( )
dX

a K X X XY H
dt

= − − − +       (2.1) 

Equation for the growth rate of the Enemy species  

22 2( )
dY

a Y K Y
dt

= −         (2.2) 

 

2.1. Normal State:  
θ φ * *

1 2 3 4E (0,0),E (x ,0), E (0,y ) ,E (x ,y )are eqilibriumpo Here ints  

The stability of the system around the internal equilibrium * *

4 ( , )E x y point is being studied   

( )
2

1 2 1 1 2* *

2

( ) 4 ( )
w Co-existehere '

2
nce state

 + + − +
= =

K K H K K
only x y K  

 3. Local Stability ( )4 ,E x y 
by Routh-Hurwitz Stability Criterion  

Local stability at equilibrium point implies that if you bring the system next to the point anywhere, it 

can shift itself in any period of time to the equilibrium point. Global equilibrium implies that from every 

possible starting stage, the system would arrive at the equilibrium point. In general, Routh-Hurwitz stability 

criterion is the best tool to discuss the Local stability and Lyapunov Theorem is an effective method to 

establish Global Stability. 

We work out the variational matrix about 
* * *

11 1 11

*

22 2

( 2 )

0 ( 2 )

a k x y a x
J

a k y

  − + + −
=  

−   

* *1
11 11*

*

22

( )

0 ( )

H
a x a x

J x

a y


 
− + −  =
 

−   
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Characteristic equation of J at 4E  is 
* *1

11 11*

*

22

( )
0

0 ( )

H
a x a x

x

a y

 



− + − −
=

− −  

*2
2 * 1 1

22 11 11 22* *
0

H x H x
a y a a a

x x
 

  +  + 
 + + + =   

      

Let
* 1

22 11 *

H x
A a y a

x

+ 
= +  

 

*2

1
11 22 *

H x
B a a

x

 +
=  

 
 

By using R-H stability criteria,  

Clearly 
* 1

22 11 *
0

H x
A a y a

x

+ 
= +  

 

*2

1
11 22 *

and 0
H x

B a a
x

 +
=  

 
 

All the elements (coefficients) in the first column of Routh array are positive. 

Hence  by R-H stability Criteria, it can be stated that the model is locally stable at interior equilibrium point   

2

1 2 1 1 2 * *

2 4

( ) 4 ( )
, . ( , )

2

K K H K K
K i e E x y

  + + − +
 
 
 

 

4. Spatiotemporal Analysis 

Due to the development and implementation of innovative mathematical tools enabling the analysis 

of broad spatiotemporal databases, spatiotemporal data analysis is emerging the research fields. 

Spatiotemporal models emerge as data is gathered over time and space, with at least one spatial and one 

temporal property. An occurrence in a spatiotemporal dataset represents a spatial and temporal process that 

occurs at a time t and x. Other uses for spatiotemporal research cover genetics, geography, meteorology, 

medicine, and including transport 

Spatiotemporal data processing involves  all temporal and spatial similarities are taken into considera

tion.Evaluation of the time and space measurements of data bringstremendous uncertainty to the data proces

sing method .In such complicated computational situations. Spatiotemporal Analysis can help us to analize 

the models. 

Here we considered an ecological system where Ammensal and enemy are living together. It is 

assumed that Ammensal species is harvested with constant mortality rate at a constant rate. 

Let us consider the diffusive equation system as  
2

2

11 1 1 1 2
( )

X X
a K X X XY H D

t s


 
= − − − + +

         
 (4.1) 

2

22 2 2 2
( )

Y Y
a Y K Y D

t s

 
= − +

           
(4.2) 

In this
1

D ,
2

D  represent the constant diffusion coefficients of the Ammensal & Enemy.  

The set of equations (4.1)-(4.2) is a diffusion system with the conditions on ( , ),X s t ( , )Y s t in 0 , 0u L L  

and 
(0, ) ( , ) (0, ) ( , )

0
X t X L t Y t Y L t

t t t t

   
= = = =

          
(4.3) 

The system (4.1)-(4.3) can be linearized by positioning the system to address its steady condition. In terms 

of the inner steady state, the linear component of the system (4.1) - (4.2) is accomplished as 
2

* *

11 11 1 2

X X
a Xx a Yx D

t s


 
= − − +

 
      (4.4) 

2
*

22 2 2

Y Y
a y Y D

t s

 
= − +

 
  `     (4.5)
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by assuming *x x X= +   and 
*y y Y= + . Let the solution of the system (4.4)-(4.5) be the form  

1( , t) costX s e ku= , 
1( , ) costY s t e ku=  ; where 1  , 2  are amplitudes and k is the wave number of the 

solution. X ,Y  are propagations of populations. Corresponding to the diffusive system (4.4)-(4.5), the 

characteristic equation is  
2 0A B + + =           (4.6) 

where
* * 2

11 22 1 2( )A a x a y k D D= + + + ;
* * 2 * * 4

11 22 11 1 22 2 1 2( )B a a x y k a D x a D y D D k= + + + .   

 

Theorem (4.1): The interior equilibrium is locally asymptotically stable in the presence of diffusion if and 

only if 0A and 0B  . 

This theorem follows immediately by Routh-Hurwitz criteria.  
* * 2

11 22 1 2( ) 0A a x a y k D D= + + +  * * 2 * * 4

11 22 11 1 22 2 1 2( ( ) ) 0B a a x y k a D x a D y D D k= + + + 
 

Theorem (4.2):  

If the system at the interior equilibrium point is globally stable without 

diffusion.Also under zero flux boundary conditions, the resulting diffusive model (4.1)-(4.3)  

is asymptotically stable globally by significantly enhancing the coefficients of diffusion. 

Proof: Let us define the function ( )1

0

( ) ,

R

V t V X Y ds=  ,  

Now we differentiate V1 w.r.to t along with X and Y  

1
1 2

0

R
dV V X V Y

ds I I
dt X t Y t

    
= + = + 

    
                                        (4.7) 

2 2

1 2 1 22 20 0
awh ndere

R RdV V X V X
I dx I D D ds

dt X s X s

    
= = + 

    
 

    
(4.8) 

         

Using the established result of B.Dubey & J.Hussain [2],  

we get

2 22 2

2 1 22 20 0

R RV X V Y
I D ds D ds

X s Y s

      
= − −   

      
   

 

2 2* *

1 22 20 0

R RX X Y Y
D ds D ds

X s Y s

    
= − −   

    
 

      

(4.9)     

From (4.7), (4.8) and (4.9),  

Clearly 1 0I  then 
1 ( )V t  is negative, it could easily be observed.If 1 0I  , then it can be observed that by 

enhancing the sufficiently large diffusion coefficients D1 and D2, 1 ( )V t  can be made negative. 

 

5. Global Stability of the Special Ecosystem 

Now we discuss the global stability of the considered Special Ecosystem in which the Ammensal Species is 

influenced by constant rate of mortality and harvesting at variable rate. 

The equations are  

(i).The rate of the growth for Ammensal Species  

2

11 1 1( (1 ) )
dX

a m K X X X Y H
dt

= − − − − +       (5.1)  

(ii).Equation for the growth rate of the Enemy species  

22 2( )
dY

a Y K Y
dt

= −          (5.2)  
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By taking perturbations(P1,P2) and after linearization, we get 

1 1 2
11 1 11 2

(1 )
2

2

dP m K K
X a P a P X

dt




 − +  
= − + −  

  
    

2
22 2

dP
a P Y

dt
= −    

The corresponding characteristic equation is  

2 1 2 1 2
11 22 11 22

(1 ) (1 )
2 2 0

2 2

m K K m K K
X a a Y X a a Y

 
 

  − +   − +    
+ + + + + =       

       
 

2The above equation is in the form 0A B + + =  

1 2
11 22

(1
wher

)
2

2
e  0

m K K
A X a a Y

 − +  
= + +   

  
    (5.3) 

1 2
11 22

(1 )
2 0

2

m K K
B X Y a a

 − +  
= +   

  
     (5.4) 

The criteria for the presence of the function of Liapunov are fulfilled. 

( )2 2

1, 2 1 1 2 2

1
(P P )Now, we 2 def ne  

2
i R P S P P PE T+ +=     (5.5) 

( )
2

1 2
22 11 22

(1 )
2

2
where

m K K
a X X a a Y

R
D

 − +  
+ +   

  =     (5.6) 

11 22a a X Y
S

D


= −

         
(5.7) 

2
2

2 2 21 2 1 2
11 11 11 22

(1 ) (1 )
4 2

2 2

m K K m K K
X a a X X a a Y

T
D

 


 − +   − +    
+ + + +      
      

= (5.8) 

and 0D AB=   

It is obvious from the equations (5.3) and (5.4) that D>0 and R>0. 

( )

2
2 1 2

22 11 22

2 2 2

(1 )
2

2
A

m K K
a Y a a Y X

D RS T
D

so Dl

  − +  
+ +   

    − = 
 
  

 

( )
2

2
21 2 1 2

11 11 11 22

(1 ) (1 )
4 2

2 2

 


  − +   − +    
+ + + +       
       

 
 
 
 

m K K m K K
X a a X X a a Y

D

 

( )
2

11 22

2

 


− 



a a XY

D
 

( )2 2 2 20 0 . 0D RT S RT S i e S RT −   −  −   

The function E(P1,P2) at (5.5) is positive definite. 
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( )2 21 2
1 2

1 2

  0
dP dPV V

P P
P dt P dt

 
 + = − + 

 
 

This is obviously a negative definite. 

So, E(P1,P2) is a Liapunov’s function for the linear system. 

Next we prove that E(P1,P2) is also a Liapunov’s function for the non-linear system. 

Let  γ1 and γ2  be two functions of X and Y defined by 

( )2

11 1 11( , ) (1 )X Y a m K X X X Y H = − − − − +
      

 

 2 22 2( , )X Y a Y K Y = −
        

 

1 2

1 2

We must now prove that   is certainly negative.
V V

P P
 

 
+

   

1 2By taking Perturbations and in theabove equations,wegetX X P Y Y P= + = +  

( )1 1 2
1 2 11 1 11 2 1 1 21

(1 )
( , ) 2 ,

2

dP m K K
P P a X P a X P P P

dt


 

− + 
= = − + − + 

 
 

( ) 2

1 1 2 11 1 11 1 2where ,P P a P a PP = − −  

Similarly 

( ) ( ) 22
1 2 22 2 2 1 2 2 1 2 22 22 ( , ) , where ,

dU
P P a Y P P P P P a P

dt
  = = − + = −  

From (5.5)    1 2 1 2

1 2

and
V V

RU SU S U T U
P P

 
= + = +

 
 

( ) ( )1 2
1 2 1 2 11 1 11 2 1 1 2

1 2

(1 )
Now 2 ,

2

m K KV V
RP SP a X P a X P P P

P P


   

 − +    
+ = + − + − +  

      

( ) ( )( )1 2 22 2 2 1 2,S P T P a Y P P P+ + − +  

( ) ( )2 2

1 2 1 2 1 2 1 1 2 1 2 2 1 2

1 2

Now ( , ) ( , )
V V

P P R P S P P P S P T P P P
P P
   

 
+ = − + + + + +

 
 

1 2Introducing polar coordi conate s & sins P P   = =
 

( ) ( )2

1 2 1 1 2 2 1 2

1 2

[( cos sin ) , ( cos sin ) , ] 
V V

R S P P S T P P
P P
         

 
+ = − + + + +

 
 

Let us denote the largest of the numbers   ,  ,  R S T by
 

( ) ( )1 1 2 2 1 2, and ,
6 6

P P P P
 

 
 

   

2 2
2

1 2

1 2

for all sufficiently small
6 3

 
4

00 ,
V V

P P

 
  




 
+  − + = −


 


 

E is thus a positive definite function according to the condition that 

1 2

1 2

is negative definite
V V

P P
 

 
+

 
  Thus the equilibrium state is “asymptotically stable” globally.   

 

6. Conclusions 

A research was extensively carried out on a special model of Mortal Ammensal and Enemy species. The 

following conclusions are put forth: 

(i). Local stability is noticed by the Routh-Hurwitz criteria at the interior equilibrium point 

(v). Diffusion analysis addresses the system's stability. 
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(vi).Global stability is established at interior Point. 
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