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ABSTRACT  

The paper intends to investigate a peculiar ecosystem. It contains Ammensal and Enemy species with 

limited resources. Mortality and immigration are both applied on Ammesnal Species.  Global stability is 

identified by choosing suitable Liapunov’s function. Stochastic Analysis has been employed. Series 

solutions are provided with the help of Homotopy perturbation method. 
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1. Introduction 

Mathematical Modelling may be viewed as a interdisciplinary concept   that deals with the 

relationship of mathematics and other disciplines. An analytical practice deals with many facets of the 

everyday environment. The phases are described as i).Defining the issue in the real world particularly in the 

biological or medical or social sense.(ii) prediction model formulation. (iii) Solving math problems that can 

emerge when evaluating the model.(iv) Development of analysis techniques and similar computer 

programmes for the computations involved.(v) To clarify and to see the outcomes in the context of the 

original issue and to convey this knowledge to all needy people. With an effective procedure of knowledge 

processing, mathematical models have been valuable methods in biological investigations. If these models 

are built and used appropriately, they can give insight into the interactions between the physical factors and 

the mechanism that influences the structure being examined. A major component in the design of 

experiments and in the analysis of results may be the subsequent interplay between experimental inquiry and 

the theoretical model. 

There are two kinds of mathematical structures in general: Deterministic and Stochastic. The 

formulation of the processes in deterministic models relies on various axioms / hypotheses to be considered 

due to the relevant system biology and these may be provided in the form of autonomous or non-

autonomous, ordinary / partial (linear or nonlinear) differential or integro-differential equations. In general, 

stochastic models are probabilistic models. K.V.L.N.Acharyulu and N.Ch. Pattabhi Ramacharyulu[5-18] 

examined local and global ecosystem equilibrium with multiple dimensions. In the earlier work, local 

stability was conducted for various Ammensal-Enemy eco-systems with diverse tools. The present 

investigation focuses primarily on establishing the global stability, Local stability and series solution and the 

authors investigated various ecological  models for their stability. Many Research scholars [1-4] and 

Mathematicians [19-31] extended their significant contributions to this modelling field. 

 

1.1 Notations: 

This is an evolutionary environment where Ammensal and Enemy species live together. It is believed that 

all interacting ecological species are continuously harvested (migrated or immigrated) by depending upon 

available natural resources. Here the Ammensal species is effected by mortality and strengthened by 

harvesting 

(i).X represents the density of Ammensal species at natural growth rate a1. 
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(ii).Y stands for the density of the Enemy species, 

(iii).h1(=a11H1) is the harvesting of Ammensal species,  

(iv). ( )i
i

ii

a
K

a
= be the carrying capacity of Ammensal Species . 

(v). 12

11

( )
a

a
 = be the Ammensalism's coefficient.  

Assume that the parameters described above are positive.  

2. Constriction of Mathematical Model 

The rate of growth equation for the Ammensal species with constant rates of mortality and harvesting: 

2

11 1 1( )= − − − +
dX

a K X X XY H
dt

        (2.1) 

The rate of growth equation for the Enemy species : 

  

22 2( )
dY

a Y K Y
dt

= −           (2.2) 

In this model , the interior point is obtained as     
2

1 1 2 2 1* * * *

4 2

4 ( ) ( )
( , ) where ,

2

H K K K K
E x y x y K

 + + − +
= =  

3. Global Stability of The System by  Lyapunov Property  

Liapunov has developed a valuable tool to efficiently assess global stability. 

Theorem (4.1): The constituted special ecosystem (2.1)-(2.2) is globally asymptotically stable at the 

positive equilibrium(x*,y*). 

Proof: Now construct suitable Liapunov function to address the global stability at interior equilibrium
* *

4 ( , )E x y

 ( ) ( ) ( )* * * * * *

1( ) (ln ln ) ( ) (ln ln )V t x x x x x l y y y y y= − − − + − − − , 1 0l     (3.1) 

* *

1

dV x x dx y y dy
l

dt x dt y dt

   − −
= +   
     

 
* *

1
11 1 1 22 2( ) ( )

Hx x y y
a x k x y l a y k y

x x y


   − − 
= − − − + + −    

    
* 2

* 2 * 2 * *

11 1 11*

( )
( ) ( ) ( ) ( )( )

x x
a x x y y H a y y x x

xx


−
= − − − − − − − −

( )
* 2

* 2 * 2 * 2 * 211
11 1 *

( )
( ) ( ) ( ) ( ) ( )

2

dV x x a
a x x y y H y y x x

dt xx

−
 − − − − − − − + −

 
* 2 * 21 11 11

11 *
( ) ( ) 1

2 2

H a a
x x a y y

xx

    
 − − + + − − +   

     

* 2 * 21 11 11
11 *

( ) ( ) 1 0
2 2

dV H a a
x x a y y

dt xx

     
 − − + + + − +     

      

Provided 1 11 11
11 *

0 1 0
2 2

H a a
a and

xx

    
+ +  +    

     
The condition hence the non- diffusive system   asymptotV (t) < 0 hol ically stds. i .s able
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4. Stochastic Analysis of The Model 

Stochastic analysis is based on the statistical calculus. This calculation was developed in order to resolve 

issues resulting from the theory of probability in which systems are driven along paths that cannot usually be 

separated. Stochastic analysis is a fundamental method of many modern probability theories with statistical 

inferences and is used in many fields of application from biology to physics. 

The equations of special ecosystem with noise effect on (2.1)-(2.2) are  

1

2

11 1 1 1(t)( )
dX

a K X X XY H
dt

  = − − − + +        (4.1) 

222 2 2 (t)( )
dY

a Y K Y
dt

 = − +          (4.2) 

here 21,  stands for  real constants , 1 2
( ) [ ( ), ( )]theGaussian white noise effect :

i
t t t  = is in a two 

dimensional system with the conditions ( ( )) 0; 1,2;iE t i = =
 

( ); 1,2ijv t t i j  = − = = where ij is the Kronecker delta function; is the Dirac –delta function. 

By the concept of Nisbet and Gurney [21], Gaussian white noise effect at the interior equilibrium point 
* *

4 ( , )E x y is discussed by taking perturbations  

* *

1 2( ) ( ) and ( ) ( )X t u t S Y t u t P= + = +  

Hence, the model (4.1)-(4.2) reduces to the following linear system and  

The linear part of the system (4.1)-(4.2) is  

1

*1
11 1 2 1(t)( )

du
a S u u

dt
 = − + +          (4.3) 

2

*2
22 2 2 (t)

du
a P u

dt
 = +

         
(4.4) 

Taking the Fourier transform of (4.3) and (4.4) we get, 

( )* *

1 1 11 1 22 2( ) ( ) ( )i a S u a S u     = + +% % %        (4.5) 

( )*

2 2 22 2( ) ( )i a P u    = −% %          (4.6) 

Now, represent (4.5) and (4.6) in a standard matrix form as ( ) ( ) ( )M u   = %%   (4.7) 

where ( )
( ) ( )

( ) ( )

A B
M

C D

 


 

 
=  
 

; ( ) 1

2

( )

( )

u
u

u






 
=  
 

%
%

%
; ( )

( )

( )

1 1

2 2

  
 

  

 
=  
  

%
%

%
;

* * *

11 22 22( ) ; ( ) ; ( ) 0; ( )A i a S B a S C D i a P     = + = = = −
    

(4.8) 

Hence the solution of (4.7) is given by ( ) ( )( )u K   = %% ,  

where ( )
1

( )K M 
−

 =            
(4.9) 

The solutions of (4.9) are given by 

( ) ( ) ( )
2

1

; 1,2i ij j

j

u K i   
=

= = %%         (4.10) 

The spectrum of , 1,2iu i = are given by ( ) ( )
2

2

1

; 1,2
iu j ij

j

S K i  
=

= =   

Intensities of fluctuations of the component , 1,2iu i =  are provided by  
2

2
2

1

1
( ) ; 1,2

2iu j ij

j

K d i   




= −

= = 
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From (4.10), we obtain  
1

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

D B
d d

M M

 
    

  

 

− −

 
 

= + 
  
   

   
2

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

A C
d d

M M

 
    

  

 

− −

 
 

= + 
  
    

where ( ) ( ) ( )M R iI  = + ; ( ) 2 * *

11 22( )R a a S P = − + ;  ( ) * *

11 22( )I a S a P = −   

If we take into consideration the noise effect on one of the species 1 20 0or = =
 

then we have   

1 2

* 2
2 22 22

1 2 2

( ) 1
0 and & 0

2 ( ) ( )
u u

a S
If d

R I


   

  



−

= = =
+  

1 2

2 2 * 2 21
2 222 2

1
0 & ( ) & 0

2 ( ) ( )
u uIf a P d

R I


    

  



−

 = = + = +  

Population variances suggest population stability with smaller mean square fluctuations, whereas greater 

population variance values indicate population instability. 

 

5. Series Solutions by Homotopy Perturbation Method (HPM) 

HPM is a effective and valuable technique for discovering series solutions of  non linear equations 

without a linearization procedure. He first implemented the process efficiently. HPM incorporates 

perturbation and homotopy processes. This approach will take advantage of traditional perturbation method 

thus avoiding constraints. In general, several mathematicians used this approach successfully to solve all 

kinds of linear and nonlinear equations in Science, Engineering and Technology. 

By the definition of homotopy, the following structure can be designed as
1 1 1 2

1 0 0 1 1 11 1 12 1 2 11 1( ) 0X X a a a a H     − + + + + − =       

1 1 1 2

2 0 0 2 2 22 2( ) 0Y Y a a   − + − + =    

( ) ( )1 1,0 2 2,0t andAssume t   = =
        

(5.1)  

The first approximations are taken into account as 

1,0 1 0 1 2,0 2 0 2( ) (0) ( ) and ( ) (0) ( )t X t t Y t     = = = = = =      (5.2)  

2 3 4 5

1 1,0 1,1 1,2 1,3 1,4 1,5( ) ( ) ( ) ( ) ( ) ( ) ( ) ......t t t t t t t           = + + + + + +    (5.3)

2 3 4 5

2 2,0 2,1 2,2 2,3 2,4 2,5( ) ( ) ( ) ( ) ( ) ( ) ( ) ......t t t t t t t           = + + + + + +
  

 (5.4)  

Here ( ), 1,2 ; 1,2,3...i j i j = = ,to be decided by the substitution of(5.1),(5.2),(5.3)&(5.4)  

Now comparing the coefficient of various powers of  in the above approximations 

After simplification, various coefficients are obtained as below  
1 :  The coefficient of  

1 2

1,1 1 1,0 11 1,0 12 1,0 2,0 11 1( ) ( ) ( ) ( ) ( ) 0t a t a t a t t a H    + + + − =  

1 2

2,1 2 2,0 22 2,0( ) ( ) ( ) 0t a t a t  − + =
 

2 :  The coefficient of 
 

1

1,2 1 1,1 11 1,0 1,1 12 1,0 2,1 12 1,1 2,0( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 0t a t a t t a t t a t t and       + + + + =

1

2,2 2 2,1 22 2,0 2,1( ) ( ) 2 ( ) ( ) 0t a t a t t   − + =  

3 :  The coefficient of   
1 2

1,3 1 1,2 11 1,0 1,2 11 1,1( ) ( ) 2 ( ) ( ) ( )t a t a t t a t    + + +
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12 1,0 2,2 12 1,1 2,1 12 1,2 2,0( ) ( ) ( ) ( ) ( ) ( ) 0a t t a t t a t t and     + + + =

1 2

2,3 2 2,2 22 2,0 2,2 22 2,1( ) ( ) 2 ( ) ( ) ( ) 0t a t a t v t a t   − + + =
 

4 :  The coefficient of 
 

1

1,4 1 1,3 11 1,0 1,3 11 1,1 1,2( ) ( ) 2 ( ) ( ) 2 ( ) ( )t a t a t t a t t     + + +

12 1,0 2,3 12 1,1 2,2 12 1,2 2,1 12 1,3 2,0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0a v t v t a v t v t a v t v t a v t v t and+ + + ++ =  

1

2,4 2 2,3 22 2,0 2,3 22 2,1 2,2( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 0t a t a t t a t t     − + + =
 

Now  2

1,1 1 1,0 11 1,0 12 1,0 2,0 11 1

0 0 0 0

( ) ( ) ( ) ( ) ( )

t t t t

t a t dt a t dt a t t dt a H dt    = − − − +     

( ) 2

1,1 1 1 11 1 12 1 2 11 1( )t a a a a H t     = − − − +  

2

2,1 2 2,0 22 2,0

0 0

( ) ( ) ( )

t t

t a t dt a t dt  = −   

2

2,1 2 2 22 2( ) ( )t a a t   = −  

( )1,2 1 11 1 12 2 1,1 12 1 2,1

0 0

( ) 2 ( ) ( )

t t

t a a a t dt a t dt     = − − − −   

( )
2

2 2

1,2 1 11 1 12 2 1 1 11 1 12 1 2 11 1 12 1 2 2 22 2( ) 2 ( ) ( )
2

t
t a a a a a a a H a a a           = − − − − − − + − −   

( )2,2 2 22 2 2,1

0

( ) 2 ( )

t

t a a t dt  = −   

( ) ( )
2

2

2,2 2 22 2 2 2 22 2[ 2 ( )]
2

t
t a a a a    = − −

2

1,3 1 1,2 11 1,0 1,2 11 1,1

0 0 0

( ) ( ) 2 ( ) ( ) ( )

t t t

t a t dt a t t dt a t dt    = − − −  

 
12 1,0 2,2 12 1,1 2,1 12 1,2 2,0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )

t t t

a t t dt a t t dt a t t dt     − − −  
 

( )1,3 1 11 1 12 2 1,2

0

( ) 2 ( )

t

t a a a t dt    = − − − 
 

11 1,1 12 2,1 1,1 12 1 2,2

0 0 0 0

( ) ( ) ( ) ( )

t t t t

a t dt a t dt t dt t dt     
 

− + − 
 
   

( ) ( ) 2

1,3 1 11 1 12 2 1 11 1 12 2 1 1 11 1 12 1 2 11 1( ) 2 2 ( )t a a a a a a a a a a H          = − − − − − − − − − +  
2 2 2

12 1 2 2 22 2 11 1 1 11 1 12 1 2 11 1 12 2 2 22 2( ) ( ) ( )a a a a a a a a H a a a          − − − − − − + + −    

( ) 
3

2 2

1 1 11 1 12 1 2 11 1 12 1 2 22 2 2 2 22 2( ) 2 ( )
6

t
a a a a H a a a a v a      − − − + − − −

 

( )2,3 1,4, (Simila ) are calculatr dl ey t t 

 The approximations of 4-terms are adequate, hence, we have
4

2 3 4

1 1, 1,0 1,1 1,2 1,3 1,4

01

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim x

x

X t t t t t t t t


          
=→

= = = + + + +  

4
2 3 4

2 2, 2,0 2,1 2,2 2,3 2,4

01

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim x

x

Y t t t t t t t t


          
=→

= = = + + + +
 

The series solutions are derived with the help of HPM as 
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2

1 1 1 11 1 12 1 2 11 1( ) ( )X t a a a a H t    = + − − − +  

( )
2

2 2

1 11 1 12 2 1 1 11 1 12 1 2 11 1 12 1 2 2 22 22 ( ) ( )
2

t
a a a a a a a H a a a         + − − − − − − + − −   

( ) ( ) 2

1 11 1 12 2 1 11 1 12 2 1 1 11 1 12 1 2 11 12 2 ( )a a a a a a a a a a H       + − − − − − − − − − +  

2 2

12 1 2 2 22 2 11 1 1 11 1 12 1 2 11 1( ) ( )a a a a a a a a H      − − − − − − +  


3

2 2 2

12 2 2 22 2 1 1 11 1 12 1 2 11 1 12 1 2 22 2 2 2 22 2( ) ( ) ( 2 ) ( )
6

t
a a a a a a a H a a a a a          − − − − − + − − −   

( ) ( ) ( )1 11 1 12 2 1 11 1 12 2 1 11 1 12 22 2 2a a a a a a a a a      + − − − − − − − − −  

2 2

1 1 11 1 12 1 2 11 1 12 1 2 2 22 2( ) ( )a a a a H a a a       − − − + − −   

2 2

11 1 1 11 1 12 1 2 11 1 12 2 2 22 2( ) ( )a a a a a H a a a    − − − − + − −  

2 2

1 1 11 1 12 1 2 11 1 12 1 2 22 2 2 2 22 2( ) ( 2 )( )a a a a H a a a a a         − − − + − − −    

2 2

11 1 1 11 1 12 1 2 11 1 12 2 2 22 26 ( ) 3 ( )a a a a a H a a a      − − − − + − − 
 

( ) 2 2

1 11 1 12 2 1 1 11 1 12 1 2 11 1 12 1 2 2 22 22 ( ) ( )a a a a a a a H a a a          − − − − − − + − −    

( )
2

2 2

12 1 2 22 2 2 22 2 2 2 22 2 22 2 2 22 2( 2 ) ( 2 ) ( )a a a a a a a a a a         − − − − − −  
 


4

2 2

12 2 22 2 2 2 22 2 1 1 11 1 12 1 2 11 13 ( 2 )( )( ) ............
24

t
a a a a a a a a a H      − − − − − − + +  

2
2 2

2 2 2 22 2 2 22 2 2 2 22 2( ) ( ) ( 2 ) ( )
2

t
Y t a a t a a a a     = + − + − −  

( ) 
3

2 2 2

2 22 2 2 22 2 2 2 22 2 22 2 2 22 22 ( 2 ) ( ) ( )
6

t
a a a a a a a a a      + − − − − −   

( ) ( ) 2 2 2

2 22 2 2 22 2 2 22 2 2 2 22 2 22 2 2 22 22 ( 2 ) ( ) ( )a a a a a a a a a a a        + − − − − − −  
 


4

2 2

22 2 2 22 2 2 22 2 2 2 22 23 ( ) ( 2 ) ( ) .......
24

t
a a a a a a a    − − − − +      

6. Conclusions 

Based on the study of Migrated Ammensal Model, the following Conclusions have been observed: 

(i).Global Stability is achieved by constructing proper Lyapunov function. The necessary theorems for 

global stability are established.  

(ii).The stochastic Analysis is employed successfully for identifying the impact of smaller mean square 

fluctuations on the stability.  

(iii).The series solutions with possible higher degrees are derived. 
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