Gη-Homeomorphism in Topological Ordered Spaces

K. Sumathi¹, T. Arunachalam², D. Subbulakshmi³, K. Indirani⁴

 ¹ Associate Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India, ksumathi@psgrkcw.ac.in.
² Professor, Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India, tarun_chalam@yahoo.com.
³ Assistant professor, Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamilnadu, India, <u>subbulakshmi169@gmail.com</u>.
⁴ Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India, <u>indirani009@ymail.com</u>.

Abstract:

The aim of this paper is to introduce a new class of closed map, open map and homeomorphism in topological ordered spaces called $xg\eta$ -closed map, $xg\eta$ -open map are obtained. The concept of homeomorphism is called $xg\eta$ -homeomorphism is defined and obtained some of its properties.

Keywords

xgŋ-closed map, xgŋ-open map, xgŋ-homeomorphism.

1. INTRODUCTION

In 1965, Nachbin [13] initiated the study of topological ordered spaces. A new class of $g\eta$ -closed maps, $g\eta$ -open maps and $g\eta$ -homeomorphism has been introduced by Subbulakshmi et al [17]. In 2001, Veera kumar [20] introduced the study of i-closed, d-closed and b-closed sets. In 2017, Amarendra babu [1] introduced g*-closed sets in topological ordered spaces. In 2019, Dhanapakyam [7] introduced βg^* -closed sets in topological ordered spaces. In 2002, Veera kumar [20] introduced Homeomorphism in topological ordered spaces. In 2020, Subbulakshmi et al [18] introduced $g\eta$ -closed, continuity, and contra continuity in topological ordered spaces. In this paper a new class of xg\eta-homeomorphism in topological ordered spaces are defined and some of their properties are analyzed. Throughout this paper [x = i, d, b]

2. PRELIMINARIES

Definition : 2.1

A subset A of a topological space (X, τ) is called

(i) α -open set [2] if $A \subseteq int (cl(int (A)))$, α -closed set if cl (int (cl(A))) $\subseteq A$.

(ii) semi-open set [10] if $A \subseteq cl(int (A))$, semi-closed set if int $(cl(A) \subseteq A)$.

(iii) η -open set [14] if $A \subseteq int (cl(int(A))) \cup cl (int (A)), \eta$ -closed set if cl (int (cl (A))) \cap int(cl(A)) $\subseteq A$.

Definition : 2.2 A subset A of a topological space (X, τ) is called

(i) g-closed set [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(ii) g*-closed set [19] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).

(iii) gη-closed set [15] if η cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

Definition : 2.3 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

(i) continuous [3] if $f^{-1}(V)$ is a closed in (X, τ) for every closed set V of (Y, σ) .

(ii) semi-continuous [10] if $f^{-1}(V)$ is a semi-closed in (X, τ) for every closed set V of (Y, σ) .

(iii) α -continuous [5] if f⁻¹(V) is a α -closed in (X, τ) for every closed set V of (Y, σ).

(iii) η -continuous [16] if f⁻¹ (V) is a η -closed in (X, τ) for every closed set V of (Y, σ).

(iv) gn-continuous [16] if $f^{-1}(V)$ is a gn-closed in (X, τ) for every closed set V of (Y, σ) .

Definition: 2.4

A bijective function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

(i) homeomorphism [12] if f is both continuous map and open map.

(ii) semi-homeomorphism [4,6] if f is both semi-continuous map and semi-open map.

(iii) α -homeomorphism [5] if f is both α -continuous map and α -open map.

(iv) η -homeomorphism [17] if f is both η -continuous map and η -open map.

(v) $g\eta$ -homeomorphism [17] if f is both $g\eta$ -continuous map and $g\eta$ -open map.

Definition 2.5: [20] A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on X and \leq is a partial order on X.

Let A be a subset of topological ordered space (X, τ, \leq) .

For any $x \in X$,

(i) $[x, \to] = \{ y \in X / x \le y \}$ and

(ii)
$$[\leftarrow, x] = \{y \in X/y \le x\}.$$

The subset A is said to be

(i) increasing if A = i(A), where $i(A) = \bigcup_{a \in A} [a, \rightarrow]$ and

(ii) decreasing if A = d (A), where $d(A) = \bigcup_{a \in A} [\leftarrow, a]$

(iii) balanced if it is both increasing and decreasing.

The complement of an increasing set is a decreasing set and the complement of a decreasing set is an increasing set.

Definition: 2.6 [20] A subset A of a topological ordered space (X, τ, \leq) is called

(i) x-closed set [18] if it is both increasing (resp. decreasing, increasing and decreasing) set and closed set.

(ii) $x\alpha$ -closed set [18] if it is both increasing (resp. decreasing, increasing and decreasing) set and α -closed set.

(iii) xsemi-closed set [18] if it is both increasing (resp. decreasing, increasing and decreasing) set and semi-closed set.

Definition: 2.7 A function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is said to be

(i) xclosed map [20] if the image of every closed set in (X, τ, \leq) is an x-closed set in (Y, σ, \leq) .

(ii) x α -closed map [20] if the image of every closed set in (X, τ , \leq) is an x α -closed set in (Y,

```
\sigma, \leq).
```

(iii) xsemi-closed map [20] if the image of every closed set in (X, τ, \leq) is an xsemi-closed set in (Y, σ, \leq) .

Definition: 2.8 A function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is said to be

(i) xopen map [8] if the image of every open set in (X, τ, \leq) is an x-open set in (Y, σ, \leq) .

(ii) x α -open map [8] if the image of every open set in (X, τ , \leq) is an x α -open set in (Y, σ , \leq).

(iii) xsemi-open map [8] if the image of every closed set in (X, τ , \leq) is an xsemi-open set in (Y,

σ, \leq).

Definition: 2.9 A function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is said to be

(i) x-homeomorphism [9] if f is both x-continuous function and x-open map.

(ii) x α -homeomorphism [9] if f is both x α -continuous function and x-open map.

(iii) xsemi-homeomorphism [9] if f is both xsemi-continuous function and x-open map.

3. ign-closed map

Definition : 3.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be an in-closed map if the image of every closed set in (X, τ, \le) is an in-closed set in (Y, σ, \le) .

Definition : 3.2 A function $f : (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be an igq-closed map if the image of every closed set in (X, τ, \leq) is an igq-closed set in (Y, σ, \leq) .

Theorem 3.3: Every i-closed, isemi-closed, i α -closed, i η -closed maps are ig η -closed map, but not conversely.

http://annalsofrscb.ro

Proof: The proof follows from the fact that every closed, semi-closed, α -closed, η -closed maps are g η -closed maps. [17]. Then every i-closed, isemi-closed, i α -closed, i η -closed maps are ig η -closed map.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}. \le = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Define a map f: $(X, \tau, \le) \rightarrow (Y, \sigma, \le)$ by f (a) = a, f (b) = c, f (c) = b.

This map is ign-closed map, but not i-closed, isemi-closed, ia-closed, iga-closed, ig*-closed, isg-closed, in-closed map. Since for the closed set $V = \{a, c\}$ in (X, τ, \leq) . Then $f(V) = \{a, b\}$ is ign-closed but not i-closed, isemi-closed, ia-closed, iga-closed, ig*-closed, isg-closed, in-closed in (Y, σ, \leq) .

4. dgn-closed map

Definition : 4.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a dη-closed map if the image of every closed set in (X, τ, \le) is a dη-closed set in (Y, σ, \le) .

Definition : 4.2 A function $f : (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be a dgη-closed map if the image of every closed set in (X, τ, \leq) is a dgη-closed set in (Y, σ, \leq) .

Theorem 4.3: Every d-closed, dsemi-closed, d α -closed, d η -closed maps are dg η -closed map, but not conversely.

Proof: The proof follows from the fact that every closed, semi-closed, α -closed, η -closed maps are g η -closed map [17]. Then every d-closed, dsemi-closed, d α -closed, d η -closed maps are dg η -closed map.

Example 4.4 : Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), \{a\}, \{b, c\}\}$

(b, b), (c, c), (a, b), (b, c), (a, c)}. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = c, f (b) = b, f(c) = a. This map is dgq-closed map but not d-closed, dsemi-closed, da-closed, dq-closed map. Since for the closed set V= {b, c} in (X, τ, \leq) . Then f (V) ={a, b} is dgq-closed but not d-closed, dsemi-closed, da-closed, dq-closed in (Y, σ, \leq) .

5. bgŋ-closed map

Definition : 5.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a bη-closed map if the image of every closed set in (X, τ, \le) is a bη-closed set in (Y, σ, \le) .

Definition : 5.2 A function $f : (X, \tau, \leq) \to (Y, \sigma, \leq)$ is said to be a bg η -closed map if the image of every closed set in (X, τ, \leq) is a bg η -closed set in (Y, σ, \leq) .

Theorem 5.3: Every b-closed, bα-closed maps are bgη-closed map, but not conversely.

Proof: The proof follows from the fact that every closed, α -closed maps are gη-closed map [17]. Then every b-closed, b α -closed maps are bgη-closed map.

Example 5.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is b g\eta-closed map but not b-closed, b\alpha-closed map. Since for the closed set $V = \{a\}$ in (X, τ, \leq) . Then f (V) = {b} is bg\eta-closed but not b-closed, b\alpha-closed in (Y, σ, \leq) .

Theorem 5.5: Every bsemi-closed, bη-closed maps are bgη-closed map, but not conversely.

Proof: The proof follows from the fact that every semi-closed, η -closed maps are bg η -closed map [17]. Then every bsemi-closed, b η -closed maps are bg η -closed map.

Example 5.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}, \leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is bgn-closed map but not bsemi-closed, bn-closed map. Since for the closed set $V = \{b, c\}$ in (X, τ, \leq) . Then f (V) = $\{a, c\}$ is bgn-closed but not bsemi-closed, bn-closed in (Y, σ, \leq) .

6. ign open map

Definition :6.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be an in-open map if the image of every open set in (X, τ, \le) is an in-open set in (Y, σ, \le) .

Definition :6.2 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be an igη-open map if the image of every open set in (X, τ, \le) is an igη-open set in (Y, σ, \le) .

Theorem 6.3: Every i-open, isemi-open, i α -open, i η -open maps are ig η -open map, but not conversely.

Proof: The proof follows from the fact that every open, semi-open, α -open, η -open maps are g η -open map [17]. Then every i-open, isemi-open, i α -open, i η -open maps are ig η -open map.

Example 6.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \varphi, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = c, f (b) = b, f (c) = a. This map is ign-open map, but not i-open, isemi-open, in-open map. Since for the open set V= $\{b, c\}$ in (X, τ, \leq) . Then f (V) = $\{a, b\}$ is ign-open but not i-open, isemi-open, in-open, isemi-open, in-open in (Y, σ, \leq) .

7. dgŋ open map

Definition :7.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a d η -open map if the image of every open set in (X, τ, \le) is a d η -open set in (Y, σ, \le) .

Definition :7.2 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a dgη-open map if the image of every open set in (X, τ, \le) is a dgη-open set in (Y, σ, \le) .

Theorem 7.3: Every d-open, d α -open maps are dg η -open map, but not conversely.

Proof: The proof follows from the fact that every open, α -open maps are gη-open map [17]. Then every d-open, d α -open maps are dgη-open map.

Example 7.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = c, f (b) = b, f (c) = a. This map is dgn-open map, but not d-open, d\alpha-open, map. Since for the open set $V = \{a, b\}$ in (X, τ, \leq) . Then f (V) = $\{b, c\}$ is dgn-open but not d-open, d\alpha-open in (Y, σ, \leq) .

Theorem 7.5: Every dsemi-open, $d\eta$ -open maps are $dg\eta$ -open map, but not conversely.

Proof: The proof follows from the fact that every semi-open, η -open maps are dg η -open map [17]. Then every dsemi-open, d η -open maps are dg η -open map.

Example 7.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = c, f (b) = a, f (c) = b. This map is dgn-open map, but not dsemi-open, dn-open map. Since for the open set $V = \{c\}$ in (X, τ, \leq) . Then f (V) = {b} is dgn-open but not dsemi-open, dn-open in (Y, σ, \leq) .

8. bgŋ open map

Definition :8.1 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a by-open map if the image of every open set in (X, τ, \le) is a by-open set in (Y, σ, \le) .

Definition :8.2 A function $f : (X, \tau, \le) \to (Y, \sigma, \le)$ is said to be a bg η -open map if the image of every open set in (X, τ, \le) is a bg η -open set in (Y, σ, \le) .

Theorem 8.3: Every b-open, bα-open maps are bgη-open map, but not conversely.

Proof: The proof follows from the fact that every open, α -open maps are bg η -open map [17]. Then every b-open, b α -open maps are bg η -open map.

Example 8.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is bgn-open map, but not b-open, b α -open map. Since for the open set V= {b, c} in (X, τ, \leq) . Then f (V) = {a, c} is bgn-open but not b-open, b α -open in (Y, σ, \leq) .

Theorem 8.5: Every bsemi-open, bη-open maps are bgη-open map, but not conversely.

Proof: The proof follows from the fact that every semi-open, η -open maps are $g\eta$ -open map [17]. Then every bsemi-open, $b\eta$ -open maps are $bg\eta$ -open map.

Example 8.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\} . \le = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \le) \rightarrow (Y, \sigma, \le)$ by f (a) = b, f (b) = a, f (c) = c. This map is bg\eta-open map, but not bsemi-open, bη-open map. Since for the open set $V = \{a\}$ in (X, τ, \le) . Then f (V) = {b} is bgη-open but not bsemi-open, bη-open in (Y, σ, \le) .

9. ign-Homeomorphism:

Definition: 9.1 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a in-homeomorphism if f is both i η -continuous function and i η -open map.

Definition: 9.2 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a ign-homeomorphism if f is both i gn-continuous function and i gn-open map.

Theorem 9.3: Every i-homeomorphism, i α -homeomorphism are ig η -homeomorphism but not conversely.

Proof: The proof follows from the fact that every i-continuous, i α -continuous functions are igncontinuous [18]. Also every i-open, i α -open maps are ign-open map. By theorem [6.3].

Example 9.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is ign-homeomorphism, but not i-homeomorphism, i α -homeomorphism. Since for the closed set V= $\{a\}$ in (Y, σ, \leq) . Then f⁻¹(V) = $\{b\}$ is ign-closed but not i-closed, i α -closed in (X, τ, \leq) .

Theorem 9.5: Every isemi-homeomorphism, $i\eta$ -homeomorphism are $ig\eta$ -homeomorphism but not conversely.

Proof: The proof follows from the fact that every isemi-continuous and iη-continuous functions are igη-continuous [18]. Also every isemi-open, iη-open maps are igη-open map. By theorem [6.3].

Example 9.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is ign-homeomorphism, but not isemi-homeomorphism, in-homeomorphism. Since for the closed set V= $\{b, c\}$ in (Y, σ, \leq) . Then f⁻¹(b, c) = $\{a, c\}$ is ign-closed but not isemi-closed, in-closed in (X, τ, \leq) .

10. dgn-Homeomorphism:

Definition 10.1 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a d η -homeomorphism if f is both d η -continuous function and d η -open map.

Definition 10.2 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a dgη-homeomorphism if f is both dgη-continuous function and dgη-open map.

Theorem 10.3: Every d-homeomorphism, d α -homeomorphism are dg η - homeomorphism but not conversely.

Proof: The proof follows from the fact that every d-continuous, d α -continuous functions are dg η -continuous [18]. Also every d-open, d α -open maps are dg η -open map. By theorem [7.3].

Example 10.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is dgn-homeomorphism, but not d-homeomorphism, d\alpha-homeomorphism. Since for the closed set $V = \{a\}$ in (Y, σ, \leq) . Then f⁻¹ $(V) = \{b\}$ is dgn-closed but not d-closed, d\alpha-closed in (X, τ, \leq) .

Theorem 10.5: Every dsemi-homeomorphism, $d\eta$ -homeomorphism are $dg\eta$ -homeomorphism but not conversely.

Proof: The proof follows from the fact that every dsemi-continuous, $d\eta$ -continuous functions are $dg\eta$ -continuous [18]. Also every dsemi-open, $d\eta$ -open maps are $dg\eta$ -open map. By theorem [7.5].

Example 10.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is dgn-homeomorphism, but not dsemi-homeomorphism, dn-homeomorphism. Since for the closed set V= $\{b, c\}$ in (Y, σ, \leq) . Then f $^{-1}(V) = \{a, c\}$ is dgn-closed but not dsemi-closed, dn-closed in (X, τ, \leq) .

11. bgη-Homeomorphism:

Definition 11.1 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a by-homeomorphism if f is both by-continuous function and by-open map.

Definition 11.2 A bijection function $f : (X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ is called a bg η -homeomorphism if f is both bg η -continuous function and bg η -open map.

Theorem 11.3: Every bsemi-homeomorphism, $b\alpha$ -homeomorphism, $b\eta$ -homeomorphism, are $bg\eta$ -homeomorphism but not conversely.

Proof: The proof follows from the fact that every bsemi-continuous, $b\alpha$ -continuous, $b\eta$ -continuous functions are $bg\eta$ -continuous [18]. Also every bsemi-open, $b\alpha$ -open, $b\eta$ -open, maps are $bg\eta$ -open map. By theorem [8.3 and 8.5].

Example 11.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is bg\eta-homeomorphism, but not bsemi-homeomorphism, b α -homeomorphism, b

Theorem 11.5: Every b-homeomorphism is bgη-homeomorphism but not conversely.

Proof: The proof follows from the fact that every b-continuous functions is bgη-continuous [18]. Also every b-open map is bgη-open map. By theorem [8.3].

Example 11.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\} \le = \{(a, a), (b, b), (c, c), (a, c)\}$. Define a map f: $(X, \tau, \leq) \rightarrow (Y, \sigma, \leq)$ by f (a) = b, f (b) = a, f (c) = c. This map is bgn-homeomorphism, but not b-homeomorphism. Since for the closed set $V = \{a\}$ in (Y, σ, \leq) . Then f⁻¹ $(V) = \{b\}$ is bgn-closed but not b-closed in (X, τ, \leq) .

12. REFERENCES:

[1] Amarendra babu. V., Aswini. J., g*-closed sets in topological ordered spaces, International journal ofAdvanced in Management, Technology and Engineering Sciences, 7 (12) (2017), 113-125.

[2] Andrijevic D. "Some properties of the topology of α-sets", Mat. Vesnik 36(1984).

[3] Balachandran. K, Sundaram. P & Maki. H, On generalised continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math, 12(1991), 5-13.

[4] Biswas. N, "On some mappings in topological spaces" Bull. Calcutta Math. Soc.1 (1969), 127-135.

[5] Devi. R & Balachandran. K (2001), Some generalizations of α -homeomorphisms in topological spaces, Indian J.Pure Appl.Math, 32(4): 551-563

[6] Devi. R, Balachandran. K, and Maki. H, semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces, Indian J. Pure Appl. Math., 26(3):271:284,

1995.

[7] Dhanapakyam C., Indirani K., On βg^* Closed Sets in Topological Ordered Spaces, International Journal of Mathematics Trends and Technology, 65(1), (2019). 7-8.

[8] Krishna rao K., Some Concepts In Topological Ordered Spaces using semi-open sets, preopen sets, α -open sets and β -open sets, Acharya Nagarjuna University Thesis, 2014.

[9] Krishna rao K., Chudamani R., α -homeomorphism in topological ordered spaces, International Journal of Mathematical Sciences, Technology and Humanities, 52 (2012) 541-560. [10] Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly,70(1963), 36-41.

[11] Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Ser. III, 10, (1975), 347 – 350.

[12] Maki. H, Sundaram. P and Balachandran. K, On Generalized Homeomorphisms in Topological Spaces, Bull. Fukuoka Univ. Ed, part-III, 40(1991), 13-21.

[13] Nachbin. L, Topology and order, Van Nostrand. D, Inc., Princeton, New Jersey [1965].

[14] Subbulakshmi. D, Sumathi. K, Indirani. K., η-open sets in topological spaces, International Journal of Innovative Technology and Exploring Engineering, 8(10s) (2019), 276-282.

[15] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed sets in topological spaces, International Journal of Recent Technology and Engineering, 8(3) (2019), 8863-8866.

[16] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-continuous in topological spaces, Advances in Mathematics: Scientific Journal 8 (2019), no.3, 677-682.

[17] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-homeomorphism in topological spaces, Advances in Mathematics: Scientific Journal 8 (2019), no.3, 705-713.

[18] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed, continuity, and contra continuity in topological ordered spaces, communicated......

[19] Veerakumar. M. K. R. S, Between g* closed sets and g closed sets Antartica J. Math, Reprint.

[20] Veera Kumar. M.K.R.S., Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII(M), No.1.(2002), 67-76.p