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ABSTRACT 

In this work, we investigate a single server queueing system with glue periods. The arrival stream 

is governed by a Poisson process, while service times and glue periods are assumed to be 

exponentially distributed. The glue period is triggered just before the arrival of the customer at 

the station. During the glue period, customers arriving at the station stick to the station’s queue 

and will be served during the service period of the station. The glue period is when customers can 

also make a reservation at a station for service in the subsequent service period of that station. 

We derive the probability distribution at random points and at departure points and other 

performance indices such as the average number of customers and the average waiting time in the 

queue and the system by applying the Laplace Transform technique. The time-dependent 

performance measures of the system are examined. The related steady-state investigation and key 

performance measures of the system are likewise exhibited. Finally, we validate our analytical 

results by some numerical examples and study the impact of parameters on the system’s 

performance characteristics. 

Keywords 

Queueing System, Networks, Transient analysis, Waiting Time, Busy Period, Glue Period, 

Laplace transforms. 
 

1. Introduction 

In recent years, there has been an increased interest in queuing systems and their applications. 

This is mainly because queuing models naturally arise in the performance analysis of a wide 

range of systems in data distributed networks, telecommunications, and traffic management on 

high-speed networks and production engineering [1, 15, 24]. New technological advances in 

computer systems and data communication networks have often inspired new results in queuing 

systems. The methods of queueing networks have always been a fundamental component of the 

study of communication systems. The widespread introduction of computers into these systems 

has introduced new results on queueing networks in studies of large communication networks’ 

performance. Some of the other prominent applications of the queueing theory are landing 

aircraft, loading, unloading of ships, machine repair, manufacturing process, taxi services, supply 

chain management and toll booths. 
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Several analytical results have been discussed for many queuing models under steady-state 

conditions. But analytical results for queuing systems’ transient behavior are not as widely 

available as steady-state results. The latter are well suited to discuss the system’s performance on 

a long time scale, while the former is useful for investigating the dynamical behavior of the 

systems over a finite time horizon. Further, transient analysis helps us understand the behavior of 

a system when the parameters involved are perturbed and can contribute to the costs and benefits 

of operating systems. Moreover, such transient analysis is instrumental in obtaining optimal 

solutions that lead to the system’s control. Despite its broad interest, the analytical approach to 

describing queuing systems’ transient behavior is notably difficult because of their mathematical 

intractability. Although much effort has been devoted to determining the exact time-dependent 

queue behavior, very few useful general results exist. Thus, the investigation of the transient 

analysis of queuing processes is highly essential from the point of view of the theory and its 

applications. 

 

This motivated us to investigate the transient analysis of a single server queuing system with glue 

period. This paper is organized in the following manner: In the next section 2, the mathematical 

model is described and explicit expressions for the transient probabilities of the system are 

discussed. The mean number and workload of the system are given in Section 3. Section 4 

discusses the steady-state probabilities of the system under investigation. Some key performance 

measures under the steady-state condition are listed out in Section 5. A numerical example is 

presented to illustrate the effect of system parameters on the performance measures in Section 6. 

Finally, Section 7 concludes the article. 

  

1.1 Literature survey 

Transient analysis is very useful in obtaining optimal solutions which lead to the control of the 

system. Krishna Kumar and Arivudainambi [17], Krishna Kumar et al. [14, 16] have discussed an

1M|M| queuing system with catastrophes. They have obtained explicit expressions for the 

transient and steady-state probabilities of the system size and related performance measures. 

Recent years have brought a rapidly increasing demand for real-time services in which jobs have 

specific timing requirements. Examples of such services include voice and video transmission, 

manufacturing systems, where the orders have due dates, real-time control systems and tracking 

systems. Another important class of applications arises in medical scheduling problems, like 

organ allocation or prioritizing admissions to emergency rooms. 

 

Multi-server preemptive priority systems with two customer classes have also received some 

attention in the literature. The multiprocessor system has wide applications in 

telecommunications, flexible manufacturing systems, reliability and traffic control. Many 

researches on the analysis of queueing system with multi-server, primarily homogeneous servers, 

are available in order to deal with the the behavior of multiprocessor systems. Although the 

difficulty of obtaining time-dependent solutions to queueing systems is well known, many 
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researchers have studied such cases; see [2] and references therein. For related literature, 

interested readers may refer to [20] and references therein. Trivedi [23] analyzed the 

multiprocessor system consisting of two types of processors where one processor is faster than 

the other and no queue is allowed in front of the slower processor. He restricts his analysis to 

steady-state measures. For the same model, Dharmaraja [7] obtained the exact time dependent 

system size probabilities. 

 

Mostly Researchers study both transient and steady-state distributions of queueing systems in 

continuous time. This is mainly due to the fact that queueing models are used for the performance 

and reliability of a wide range of systems in wireless networks, telecommunication systems and 

data distributed networks. Now a days, new results in queueing systems have often been inspired 

by latest technical advances in computer network systems and wireless communication systems. 

For design and tuning of the advanced network system, performance must be analysed 

mathematically and evaluated numerically. For excellent overview of the fundamental techniques 

and classical results on queueing theory, we refer the reader to the monographs by Bertsekas and 

Gallager [5], Takagi [22], Daigle [6] Gelenbe and Pujolle [9], Hayes and GaneshBabu [10], 

Giambene [3], Yadavalli and Anbazhagan [27] and Anantha Lakshmi et al. [18]. The analyses in 

these papers mostly yield implicit expressions for performance characteristics through Laplace 

transforms, integro-differential equations and infinite convolutions. More specifically, there is 

vast literature on the transient analysis of the 1M|M|  queue with the goal to derive explicit 

expressions for queue length characteristics. 

 

Recently, Parthasarathy and Sudesh [21] have studied anM|M|C  queuing system with the 

widely discussed N-policy [28]. The transient solution for the system size probabilities and busy 

period distribution of the system are derived for the model under discussion. Wireless networks 

have received more attention as a mean of data communication among portable devices. As 

wireless devices usually rely on portable power sources such as batteries to provide the necessary 

operational power, power management in wireless networks has become a critical issue. For 

instance, IEEE 802.16e is designed to support high capacity, high data rate and multimedia 

services as an emerging broadband wireless access system for fixed and mobile service stations. 

Several researchers have been developed analytical models and obtained the performance of the 

sleep mode operations in the IEEE 802.16e system (see Hwang, Kim, Son, and Choi [12, 13] 

2009, 2010; Baek, Son,and Choi [4] v 2011; Huo, Jin, and Wang [11] 2011). These wireless 

network characteristics can be modeled from a more practical viewpoint if the transient analysis 

can be integrated. 

 

2. Model Description 

We consider an | |1M M  queueing system with unlimited capacity waiting room for customers to wait. Let the 

arrival of customers follow a Poisson process with rate   and service times follow an exponential distribution with 
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rate  . It is assumed that the glue period is exponentially distributed with rate  . The glue period is activated just 

before the arrival of the server at the station. During glue period, customer arriving at the station stick to the queue of 

the station and will be served during the service period of that station. It also include the period period in which 

customers can make a reservation at a station for service in the subsequent service period of that station. This can 

also be done when there are no customers in the system. The glue period can also be considered as repair time or 

a vacation queueing model with single vacation. We model our single server queueing with glue period as a 

continuous time Markov chain. Let { ( ); }X t t Rò  be the continuous time chain random process, 

( ) = ( ( ) = )nP t P X t n , = 0,1,2,...n  denotes the probabilities that there are n  customers in the system at time t 

when the server is in working state/on state and ( ) = ( ( ) = )G t P X t G  is the probability that the server is in glue 

period at time t . It is clear that the state space of the system is = ,0,1,2,..S G . Let 

 

 

0

( , ) = ( ) ( )




 n

n

n

P z t G t P t z  

 

 be the probability generating function and  ( ) = ( )m t E X t  be the mean number of customers at time t  

for the model under discussion. 

 

 From the above assumption it is clear that the system size probabilities ( )nP t , n=0,1,2,.. the glue period 

state probability ( )G t  of the server satisfy the following Chapman-Kolmogorov equation: 

 

 1

( )
= ( ) ( ) ( )

dG t
G t P t

dt
      (1) 

 

 
0

0

( )
= ( ) ( )

dP t
P t G t

dt
    (2) 

  

 
1

1 0 2

( )
= ( ) ( ) ( ) ( ) ( )

dP t
P t P t P t G t

dt
          (3) 

 

 1 1

( )
= ( ) ( ) ( ) ( ), = 2,3,4..       n

n n n

dP t
P t P t P t n

dt
 (4) 

 

 0(0) =1, (0) = 0, 0, (0) = 0 (0) = 0nP P n C and V  (5) 

 Multiplying equations (3) and (4) by z  and 
nz  respectively summing over all the values of n , and then using  

 

0

( , ) = ( ) ( )




 n

n

n

P z t G t P t z  

 it is seen that the probability generating function ( , )P z t  satisfies the differential equation 
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  0

( , ) 1
= ( ) ( , ) 1 ( ) ( )


   
   

        
   

dP z t
z P z t P t G t

dt z z
 (6) 

 

with the initial condition ( ,0) =1P z  (7) 

 the solution of (6) can be obtained as 

 

 
[ ( ) ] [ ( ) ]( )

0
0

1
( , ) = (1 ) ( ) ( )

 
     


       

    


tz t z t u du
z zP z t e P u G u e

z
 (8) 

 

It is well known that if = 2   and = ,





 then  

 

=

= ( )( )


  




 
 

 
 n

n

exp z t I t z
z

 (9) 

 where ( )( )nI t z   is the modified Bessel function of order n  (see [25]). Using (9) in equation (8) and comparing 

the coefficient of 
nz  on either side we get for =1,2,3,...n  

 

( ) ( )( )

0
0

1 ( )( )

0
0

( ) = { ( ) [ ( ) ( )] ( ( ))

[ ( ) ( )] }

   

 

   



    

   

  

 





t
n t n t u

n n n

t
n t u

P t e I t P u G u e I t u du

P u G u e du

 (10) 

 As ( , )P z t  does not contain terms with negative powers of z , the right hand side of equation (10) with n  

replaced by n  must be zero. Thus,  
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0
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0 1
0

0 = ( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))
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 Multiplying the above equation by 
2n  on both sides and after some algebra we get  

 

 

( ) ( )( )

0
0

1 ( )( )

0 1
0

( ) [ ( ) ( )] [ ( )]

= ( ) ( ( ))

   

 

  

 

    

   



  

 





t
n t t u

n n

t
n t u

n

e I t P u G u e I t u du

P G u e I t u du

 (11) 

 where we have used (.) = (.)n nI I . On using equation (11) in equation (10) and simplyfying we get an elegant 

expression for ( ), =1,2,3...nP t n  as,  

 
( )( )

0
0

( )
( ) = [ ( ) ( )]

( )

t
n t u n

n

I t u
P t n P u G u e du

t u

  
    


  (12) 

 We use Laplace transform with respect to time to find ( )G t  and 0 ( )P t . For any function (.)f  and *( )f s  

denotes its Laplace transform and  denote the convolution. By transforming equations (1), (2) and (12), we get  

 
* *

1( ) = ( )G s P s
s



  
 (13) 
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* *

0

1
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 (14) 

 

 

2

* * *

1 0

( ) ( ) 4
( ) = [ ( ) ( )]

2

s s
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  (15) 

 These equations after some algebric manupulation and rearrangement yield,  

 

2 2

*
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2
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2
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s

s s
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 (18) 

 Equation (16) and (17) can be expressed as  

 

2 2
* *

=0

( ) ( ) 1
( ) = [ ] ( ( ))

2
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n

s s
G s H s

s s
 (19) 

 

 

 

2 2
* *

0

=0

( ) ( )1 1
( ) = ( ( ))
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n

s s
P s H s
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 Where 
*( )H s  is given in equation (18), Inversion of (19) and (20) yields,  
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 Where 
( ) ( )nH t  is the n -fold convolution of  

( ) 1 ( )( ) ( ) 1 ( )( )1 1

0 0

( ) ( )
( ) =

( ) ( )

         
               


  

t t
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 with itself and  
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1 0
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0 0






if t
H t
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we summarise the main results in the following theorem.  

Theorem 1: 

 The transient probabilities of system size ( ), = 0,1,2,...nP t n  and the glue period probability ( )G t  for 

the model under discussion are obtained as  

 
( ) 1 ( )( ) ( ) ( )1

0
0

=0

( )
( ) = ( )

( )

      
 


         

 



t

t t u t u n u u

n
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( ) 1 ( )( ) ( ) ( )1

0
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( )

    



       





t

t u t u n u

n

I t u
G t e e H u e du

t u
 

 

 
( )( )

0
0

( )
( ) = [ ( ) ( )] , = 1,2,3,..

( )

  
    

 


t
n t u n

n

I t u
P t n P u G u e du n

t u
 

 where ( )H t  is given by the equation (23) and 
(0) ( )H t  is the n -fold convolution of ( )H t  with itself  

Remark: 

 From equation (12) we can express the system size probability ( ), =1,2,3,...nP t n  as  

 0 0
0

( ) = [ ( ) ( )] ( )

n
t

n nP t P u G u f t u du




 
  

 
  (24) 

 where  

 
( )

0

( )
( ) = n t n

n

I t
f t n e

t

  
   

 

 is the probability density function of busy period of an | |1M M  queue beginning at first with n  customers. Thus 

the equation (24) establish an interesting relation between the system size probability ( ), =1,2,3,...nP t n  and the 

busy period distribution of the | |1M M  queue for our general queueing system.  

Theorem 2: 

 The asymptotic behaviour of the probability 0 ( )P t  is as follows   

    1.  If , 0,     then 0 ( ) , =

(1 )

(1 )

P t as t where






 
 
 

 






 (25) 

 

    2.  If = , 0,     then 0

1
( )P t as t

t



  



:  (26) 

 

    3.  If    and 0,   then 0
0

( ) =
( )( )

P t dt
  

   

  

   (27) 
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Proof: 

 From equation (17) for    and 0   we get   

 

1
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2 2
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1 1 2 ( )
1 ( ) ( ) 1

2( ) ( ) ( )
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K s s
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  Expanding binomially both the numerator and denominator of the above expression in powers of s  and taking limit 

as 0s  , we have  

 
*

0

2
2

( ) ( )
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( ) ( ) ( )

( ) ( )
, if

[ ] ( )

  

     



 
  

   

  
      




  
   

 

o s

o s

P s o s

s o s

:  (29) 

 By using the Tauberian theorem [26] the results (25) and (27) follows from equation (29), the result for 0 ( )P t  in the 

case = , > 0    is obtained from equation (17) we have  

 

1

2 2
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0 1

2

1 1 2 ( 4 )
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2

( ) =

1 2 ( 4 )
1 1
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 Again expanding the numerator and denominator of the above expression in powers of s  and taking the limit as 

0s   we get  

 
*

0

( )
( )

( ) ( )

s o s
P s

s o s

 

  

 

 
:  (31) 

 Invoking the Tauberian theorem again, the result (26) follows from equation (31)  

Theorem 3: 

 The asymptotic behaviour of the glue period probability ( )G t  is as follows:   

    1.  If , 0,     then 
1

( ) = , =

(1 )

(1 )

G t as t where



 

 
 








 (32) 
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    2.  If = , 0,     then 
1

( )G t as t
t



  



:  (33) 

 

    3.  If    and 0,   then 
0

( ) =
( )( )

G t dt


   



   (34) 

 

 

Proof: 

 For    and 0   by rearranging the terms in equation (16), we have   
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 Expanding binomially the numerator and denominator of equation (35) in powers of we get for    and 0  , 

after some mathematical manupulation,  
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2
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( ) , 0
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:  (36) 

 and for    and 0   we obtain again from equation (35)  

 
* ( )
( ) , 0

( )( ) ( )

o s
C s as s

o s



   




  
:  (37) 

 Similarly for = ,   and 0   expanding both the numerator and denominator in powers of s  equation (35) 

leads to  

 
*

[1 ( )]

( ) , 0
( ) ( )

s
o s

C s as s
s o s




  

 


 

:  (38) 

 Thus the results (32), (33) and (34) follows from equations (36), (37) and (38) by invoking Tauberian theorem [26]. 

 

3. Mean number and workload  

 

The main objective of this section is to determine the time dependent performance measures such as the 

complementary cumulative distribution function of ( )X t , the mean number ( )m t  of customers present in the 

system and the expected work ( ( ))E W t  at time t , where ( )W t  is the workload or virtual waiting time at time t  

for the queueing system understudy. By definition the complementary cumulative distribution function of the system 

size ( )X t  is given by,  
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 The above equation can be written as  
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 where 0 ( )kf t  is defined in equation (24) . 

The mean ( ) = [ ( )]m t E X t  is given as  
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 The expected workload or virtual waiting time [ ( )]E W t  in the system at time t  is  

 0 0
0

=1
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[ ( )] = = [ ( ) ( )] ( )



  

  
  

 


k
t
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k

E X t
E W t P u G u k f t u du  (42) 

 

4. Steady-State Analysis 

We will examine the behavior of the steady-state probabilities of the system size and the glue period 

probability of the server of our queueing system. From the perspective of practical applications, such steady-state 

probabilities(i.e persistent) rather than start up (i.e transient) behavior is useful.We will examine the behavior of the 

steady-state probabilities of the system size and the glue period probability of the server of our queueing system. 

From the perspective of practical applications, such steady-state probabilities(i.e persistent) rather than start up (i.e 

transient) behavior is useful.  

Theorem 4: 

 For    and 0,   the steady-state probabilities of the system size  : = 0,1,2...nP n  the glue 

period probability G  of the queueing system are obtained as  

 
1 1
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and 
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 where =





 

Proof: 

 For , 0     we get from equations (12) - (15)  
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 Now using the Tauberian theorem [26] we get  
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 After some mathematical manipulations, we get from (46) - (48)  

 = 1 , =1,2,3,...

n

nP G n
 

 

   
  

  
 (49) 

 Now using the normalising condition 0

= 1

= 1


  n

n

G P P   to get the uniform probability G  as  

 
1

=

1

1

G










 (50) 

 Hence equations (46) to (50) completely determine all the steady-state probabilities 
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 , = 0,1,2,...nP n  of the system size and the steady-state probability G  of the glue period probability. 

 

5. System Performance Measures 

We are currently in a situation to study some fascinating and significant performance measures, namely, 

mean of the system size, accessibility of the server, system throughput, mean waiting time, mean cycle time of the 

system and expected number of customers served during the busy period under steady-state condition.  

 Based on the Theorem 4, we can get the probability generating function and the corresponding moments 

through the steady-state. It is seen that the steady-state moments are regularly great approximations to the transient 

counterpart expressions even when time t is of moderate size.  

 We have the following theorem.  

Theorem 5: 

 If    and 0   then the steady-state probability generating function ( )P z  of the number of 

customers in the system is given by  

 

1 (1 )
(1 )

( ) = [ ] =
(1 )

1 (1 )

X

z

P z E z
z


 

 
  


 
   

 
    

 

 (51) 

 The mean ( )E X  of the system size is obtained as  

 

1

1
( ) = , =

1
1

1

E X where




 


  














 (52) 

 Let Q  denote the number of customers in the queue. Then, the steady-state probability generating function ( )z  

and the mean ( )E Q  are determined as  

 

1 1

( ) = ( ) =
1

1 1

1 1

Qz E z
z

 
 

  

  
 

 




 

 
 

 (53) 

 

 

2

1

1
( ) =

1
1

1

E Q






 
 
 











 (54) 

 Multiplying (54) by 
nz  and summing over , =1,2,3,...n n  and then adding equations (43) and (44), after a little 

algebra we get (51). The result (52) follows directly from (51) on differentiation with respect to z  and setting =1z
.  
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Corollary 1: 

The second moment 
2( )E X  and variance ( )V X  of the system size, under steady-state are given as  

 
2

2

1

(1 )1
( ) =

(1 )
1

1

E X




 

 














 (55) 

 and  

 

2

2

1 1

(1 )1 1
( ) =

(1 ) (1 )
1 1

1 1

Var X

 

 
   

  

  
 

 
  

 
  
   

 
    

 (56) 

 

Remark 2: 

 It is interesting to note that stochastic decomposition law [8, 19] can be demonstrated for our queueing 

system also. we can write equation (51) as  

 

| |1
( ) = ( ) ( )

M M
P z z z  

 

 where 
| |1

1
( ) =

1M M
z

z








 , the probabilty generating function of the number of customers in the 

| |1M M  queue at a random point in time equilibrium and  

1 (1 )

( ) =

1 (1 )

z

z


 




 


  

  

 

 the probability generating function of the additional number of customers at a random point in time 

equilibrium when the server is either idle or in glue period.  

 Thus, 
| |1

( ) = ( ) ( )
M M

P z z z  conforms that the decomposition law of [8] is also valid for our queueing 

system under steady-state.  

 There are several general descriptors of our queuing system, some of which are listed below: 

 Under steady-state, it can be seen that  

 
=1

1

1
( ) = =

1

1























 n

n

P server is busy P  (57) 
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1

1
( ) =

1

1



















P server is available  (58) 

 

 
0

1
( ) = =

1

1










 







P server is either idle or in glue period state P G  (59) 

 and  

 0

(1 )

1
= ( ) = 1 =

1

1















 






wP P An arriving customer has to wait for service P G  (60) 

 The condition probabilities are  

 ( | ) = P serverisbusy serverisavailable  (61) 

 and  

 ( | ) =1 P serverisidle serverisavailable  (62) 

 The probability of atleast k  customers in the system is given as  

 
=

1

1
[ ] = =

1

1

k

n

n k

P X k P
























  (63) 

 It is to note that the conditional probabilities (61) and (62) depend only on the parameters   and  , and are 

independent of the other system parameters.  

 To obtain the mean number of customers in the system when the server is available, define the conditional 

generating function  

 
1

( ) = [ | ] =
1










xz E z server is available
z

 (64) 

 So that the conditional expectation is  

 [ | ] =
1




E X server is available  (65) 

 Evidently the results in equations (64) and (65) agree with the probability generating function of the system size and 

the mean system size of the | |1M M  queueing model without conditioning the availability of the server.  

 The conditional probability generating function of the number of customers in the queue is defined as  
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1

( ) = [ | ] = [1 (1 )]
1







 



QR z E z server is available z
z

 (66) 

 and its conditional expectation can be obtained as  

 

2

[ | ] =
1




E Q server is available  (67) 

 For the sake of orientation, we introduce the following notations:  

 Let U  be the system throughput, which is the rate at which customers exit the queue; ,eff  the effective 

arrival rate when the server is accessible; ( ),sE W  the mean waiting time in the system; ( ),qE W  the mean waiting 

time in the queue; ( )E T , the mean cycle time of the system and ( )E N , the expected number of customers served 

during the busy period. the following theorem summarizes the results:  

Theorem 6: 

 For   , and 0  , under steady-state  

 

(1 )

1
=

1

1

U





















 (68) 

 

 
1

( ) =sE W
 

 (69) 

 

 ( ) =
(1 )

qE W


 
 (70) 

 

 

1

11
[ | 0] =

1(1 )

1






  














q qE W W  (71) 

 

 

1 1

( ) =
1

E T  





 (72) 

 and  

 

1

( ) =
1

E N









 (73) 
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Proof: 

 The system throughput, U , is the rate at which customers exit the queue whenever there are one or more 

customers in the system. With the exit rate  , we can obtain, after some algebra,  

 0

(1 )

= [1 ] =

1

1

U P G












 






 (74) 

 where we have used equations (43) and (44)  

 The effective arrival rate eff  (i.e the total arrival rate whenever the server is available) is defined as  

 0

=1

(1 )

1
= =

1

1

eff n

n

G P P







   










 






  (75) 

 It is interesting to note from equations (74) and (75) that, under steady stae, the effective arrival rate eff  is equal to 

the system throughput U , i.e. =eff U , which verifies the well known classical Burke’s theorem (1956) for our 

queueing system also.  

 Now, by using Little’s law, the mean waiting time ( )sE W (sojourn time) in the system is obtained from 

Equation (52) as  

 
( ) 1

( ) = =s

eff

E X
E W

  
 (76) 

 In a similar way, the mean waiting time ( )qE W  in the queue is derived from (54) as  

 
( )

( ) = =
(1 )

q

eff

E Q
E W



  
 (77) 

    also 

(1 )

( ) 1
[ | 0] = =

1 1(1 )

1






 









  




q

q q

E W
E W W

P G
 (78) 

 Let T  denote the cycle length of the regenerative process of the queueing system under investigator. It is clear that 

the cycle length T  consists of a period during which the server is in glue period (GP), an idle period of the server 

(IP) and a busy period of the server (BP) 

i.e =T GP IP BP   

 Moreover, the underlying queueing system being a Markov process, it can be seen that  
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1

( ) = ,


E GP
1

( ) = ,


E IP

1 1

( ) =
1


 



 
 

 


E BP  

 

  

 Finally, 

1 1

1 1
( ) = ( ) ( ) ( ) =

1


 

  

 
 

    


E T E GP E IP E BP  

1 1

( ) =
1

E T  





 (79) 

 

 
( ) 1 1

( ) = , where ( ) =
1

E
E T E




  



 

 

More over the expected number of unblocked customers who enter the system during a cycle is  

 

1 1

( ) =
1

  





eff E T  (80) 

 It is interesting to observe from equation (80) that  

 ( ) = ( )eff E T E BP   (81) 

 The expected number ( )E N  of unblocked customers served during the busy period of the system [22] is  

 

1 1

( ) = ( ) ( ) =
1

E N E E BP


  








 (82) 

 From equations (80) - (82) we could extract a nice and interesting relation  

 ( ) = ( ) = ( )eff E T E BP E N   (83) 

 

6. Numerical Illustrations 

 

In this section, we present some numerical examples using MATLAB in order to illustrate the effect of 

various parameters in the system performance measures. We study the effect of the system parameters on the 

folowing main performance measures of our queueing system: 

   • the probability ( )nP t  that there are n  customers in the system.  

    • the expected waiting time of customers in the system.  

    • the expected number of customers in the system.  

    • the glue period of the system.  
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Figure  1: ( )SE W  versus                                        Figure  2: ( )SE W  versus   

 Figure 1 shows that as the arrival rate increases the expected waiting time in the system increases for 

=13 , =14 , and =15 . This is due to the fact that when the arrival rate ofthe customers is greater, the 

probability of the server being busy will increase as expected and hence will increase the expected waiting time. On 

the other hand Figure 2 shows that as the service rate increases the expected waiting time in the system decreases for 

a fixed value of = 6 , = 7 , and = 8 . As the number of customers in the system increase it will increase the 

service rate and hence the increase in the expected waiting time. 

 

 

Figure  3: ( )qE W  versus  Figure                                     4: ( )qE W  versus   

For fixed values of =19.5 , = 20.5 , and = 21.5 , figure 3 shows that the expected waiting time in 

the queue decreases as the service rate increases. This is because if the service rate increases then the customers 

waiting time is decreases. The expected waiting time in the queue increases as the arrival rate increases for = 2.6

, = 2.7 , and = 2.8  is shown in figure 4. This is since, supposing that the arrival rateexpands then the 

customers waiting time is expanded. 

 

 

Figure  5: nP  with fixed 
                                                                             

Figure  6: nP  with fixed   
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 With different values of   and   and with fixed value of = 8 , = 9n , figure 5 shows ( )nP t . As the 

service rate decreases the probability that there are n customers in the system decreases and hence the glue period 

decreases. Figure 6 shows ( )nP t  with fixed value of =12 , = 8n  and varies with   and  . Here as the arrival 

rate increases the glue period increases and hence its probability increases. 

 

 

                           Figure  7: nP  with fixed                                                  Figure  8: ( )E T  with fixed   

 

The value of   and   fluctuates with fixed appraisal of =10 , = 6n  in ( )nP t  is shown in Figure 

7.With varied values of   and  , figure 8 shows the expected time with fixed = 4 . 

 

 

                       Figure  9: ( )E T  with fixed 
                               

Figure  10: ( )E T  with fixed   

 

The expected time increases as the service rate and glue period decrease. With fixed = 21  and varying 

with   and  , Figure 9 shows the expected time increases. This is due to the fact that as the arrival rate increases 

the glue period increases and hence increase in mean waiting time. Figure 10 shows the expected time with fixed 

=13  and varies with   and  . 
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                                    Figure  11: ( )E N  with fixed                             Figure  12: ( )E N  with fixed   

 

The expected waiting time increases as service rate decreases and the arrival rate increases. With fixed 

= 5  and varying with   and  , the expected number of customers can be seen in Figure 11. The expected 

number of customers increases as the service rate and the glue period decreases. Figure 12 shows the expected 

number of customers with fixed = 5  and varies with   and  . As the glue period decreases and the arrival rate 

increases, the expected number of customers increases. 

As   and   varies the expected number of customers with fixed =12  is shown in Figure 13. This is 

because as the expected number of customers increases the service rate decreases and the arrival rate increases.  

 From the above numerical examples, we observed that the influence of parameters on the performance measures in 

the system and the results are coincident with the practical situations.  

 

7. Conclusion 

This paper addresses a fundamental issue in the existing queuing system, how to reduce the time individuals 

spend waiting in queues. This is a desirable goal because the waiting time is often assumed to be fruitless, even 

though this is not always the case. The derived results have numerous potential real-life applications, such as the 

Simple Mail Transfer Protocol, the well-known SMTP mail system for delivering messages to and from mail servers. 

Similarly, it can be implemented in the computer processing system and telephone consultation of medical service 

systems. This work can be further extended in many directions by incorporating the concepts of batch arrival, bulk 

service, and working breakdowns. This investigation is expected to be useful for for the system managers to make 

decisions regarding the system’s size and other factors in a well-to-do manner. 

 

Figure  13: ( )E N  with fixed   
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