Pathological Effects and Management Protocols of Diabetes Mellitus

Zahraa Salah Abd Al-Hadie

Department of Basic Sciences, College of Dentistry, University of Wasit, Wasit, Iraq

Email: zahalatabie@uowasit.edu.iq

ORCID: 0009-0004-7688-5164

Abstract

Diabetes Mellitus (DM) is a chronic metabolic disease which manifested with low insulin production as well as insulin resistance resulting from genetic and environmental factors. It is one of the most rapidly growing diseases globally and poses a primary risk to global health. Over the past 30 years, the world has shown a continuous elevation in incidence of DM; especially in developing countries with the fastest growth in North Africa and the Middle East have the second maximum rate of diabetes. In T1DM, the individual body is no longer making insulin or in enough amount because the immune system has destructed and destroyed the pancreatic beta cells responsible for making the insulin. The exact reason for this pattern of diabetes is unrevealed, and almost all persons who experience this chronic illness do not realize how to manage it. T2DM is one of most prevalent diseases consisting of about 90-95% of all diabetes cases. T2DM is becoming more commonplace because of the excess obesity in the population. T2DM patients are mainly characterized as being overweight or existence of greater amount of body fats that mostly found in abdomen, at which situation, several inflammatory mechanisms, fatty substance elevates insulin resistance, for instance, free fatty acids delivered with adipocyte disorganizing. Primary driver for epidemically prevalence of T2DM is a worldwide elevation in obesity, style way of living, high-calorie food, and ageing of individuals. Interactions between risk factors and genetic inheritance are complicated to cause T2DM, such as obesity and sedentary lifestyle, hypo insulin secretion, increased lipolysis, and increased reabsorption of glucose from the kidney, and dysregulated glucose uptake, neurotransmitter imbalance, and increased production of liver glucose. Achieving good metabolic control and long-term maintenance of diabetes requires a combination of lifestyle changes and medications are necessary to achieving near-normal hemoglobin glycosides significantly and risk of macrovascular and microvascular problems will decrease

Keywords: T1DM, T2DM, Nephropathy, Retinopathy, Macrovascular disorders, Microvascular disorders

Background

Diabetes Mellitus (DM) is a chronic metabolic disease which manifested with low insulin production as well as insulin resistance resulting from genetic and environmental factors. It is one of the most rapidly growing diseases globally and poses a primary risk to global health. The disease could result in frequent damages and dysfunctions for different organs particularly nerve, blood vessel, kidney, heart and eye (Al-Shaeli et al., 2022; Zhao et al., 2023).

Epidemiology

There was a rapid elevation in prevalence of disease at an alarming rate and was reported epidemically in 21st century, to affect millions of individuals around the world. As stated by the International Diabetes Federation (IDF). It is assumed that during 2019, 463 million people between 20-79 years were vivid with DM and expected to skip 640 million in 2040. Nearly fifty percent of patient's number with diabetes are insensible of their illness, thus, leading to developing diabetic complications; 5 million deaths approximately in 2015 were attributed to diabetes; the new manifest shows that DM persists to be a significant international health challenge and is likely to continue to go on growing basically in the following decades, which may have main implications for healthcare expenses, especially in developing world (Saeedi et al., 2019; Al-Sarray and Al-Shaeli, 2022; Al-Shaeli et al., 2022). Over the past 30 years, the world has shown a continuous elevation in incidence of DM, especially in developing countries with the fastest growth (Al-Shaeli and Ethaeb, 2019). Within IDF regions, North Africa and the Middle East have the second maximum rate of diabetes and 9.2% prevalence (El-Kebbi et al., 2021). The IDF reported that the Kingdom of Saudi Arabia (KSA) was in the middle first ten countries among peak spread averages of disease worldwide. The current prevalence of DM in KSA is around 23% (Al Dawish et al., 2016). The IDF reported that approximately one in four adults in Saudi Arabia would have Diabetes by 2045. There has been a lifestyle alteration among Saudi Arabian people related to urbanization and eating habits. The continuous exhaustion of big fat diets, great energy, and minimum scales of physical occupation drive alterations in energy equilibrium with preserving excess energies as fats since large quantities of energy consuming stimulate resistance to insulin prior the occurrence of apparent weight gains (Al-Shaeli and Ethaeb, 2019; Alemany, 2024).

In Iran, DM spreading in people of 25–70 years was determined at 11.9% in 2011, which manifests a rise of 36% compared to 2005 (Arokiasamy et al., 2021). It is appreciated that in the year 2031, nearly 9.3 million Iranians will likely experience the disease. As claimed by IDF in 2013, the prevalence in turkey was evaluated as 14.85% (Yıldırım and Marakoğlu, 2018). The development of obesity and the ageing of the population have been suggested as primary causes of DM epidemic. The prevalence in Iraq rated 8.5% to 13.9%, with around 1.4 million Iraqis having DM; the majority of Diabetes in Basra, Iraq, is very high, affecting one in five adults (Farmanfarma et al., 2020).

Classification

The disease can be categorized to four types:

- 1. Type 1 diabetes (T1DM) caused by the destruction of autoimmune- β -cells that absolutely reduces insulin production.
- 2. Type 2 diabetes (T2DM) caused by the loss of β -cells, and insulin excretion is significantly affected by the setting of insulin resistance.
- **3.** Gestational diabetes mellitus is diagnosed during pregnancy and was not noted before gestation.

4. Certain types of diabetes as a result of different causes, for instance, monogenetic diabetes syndromes, like diabetes of the neonatal, diabetes onset in young adults, exocrine pancreatic diseases (including pancreatitis and cystic fibrosis), and drug or chemically-stimulating DM like utilization the glucocorticoids or subsequently to transplantation of organs).

T1DM

A chronic illness featured by absolute insulin deficiency due to loss of β -cells in the pancreas and resulting in hyperglycemia (Wilcox et al., 2016; AL-Shaeli et al., 2022). Also recognized is diabetes of autoimmunity. Although the lifetime of symptoms onset is usually during childhood or adolescence, the symptoms may arise later (Gharban et al., 2023). In T1DM, the individual body is no longer making insulin or in enough amount because the immune system has destructed and destroyed the pancreatic beta cells responsible for making the insulin. The exact reason for this pattern of diabetes is unrevealed, and almost all persons who experience this chronic illness do not realize how to manage it (Szablewski, 2014). Novel accession for insulin treatment, for instance, insulin pumps, progress glucose evaluation, and mixture closed-loop devices, are in development (Forlenza et al., 2022).

T2DM

It is one of almost general metabolic illnesses globally (Hameed et al., 2015). A combination of two factors that primarily lead to its development: deficient in secretion of insulin through the β-cells of pancreas with disability of tissue to be sensitive for insulin cause an impairment in secretion of insulin and increasing the are the primary defects accountable for the development of the disorder (Sarkar et al., 2019). T2DM is one of most prevalent diseases consisting of about 90-95% of all diabetes cases. T2DM is becoming more commonplace because of the excess obesity in the population. T2DM patients are mainly characterized as being overweight or existence of greater amount of body fats that mostly found in abdomen, at which situation, several inflammatory mechanisms, fatty substance elevates insulin resistance, for instance, free fatty acids (FFAs) delivered with adipocyte disorganizing. Primary driver for epidemically prevalence of T2DM is a worldwide elevation in obesity, style way of living, high-calorie food, and ageing of individuals (Dilworth et al., 2021; Al-Hetty et al., 2023). This disease has an exception for rapidly growing over following 2 decades later; >70% of the diseased individuals will manifest in developed regions, mostly who aged 45-64 years; advanced age, even though it is a risk factor for T2DM, higher rate of children overweight can result in great widespread of disease in teenager and adolescent. It is an acute onset of an epidemic and a new public health problem of significant proportions (Kharroubi and Darwish, 2015; Saleem et al., 2021).

Clinical Presentation

DM is a variable disease that clinically presenting different symptoms. Children with T1DM typically develop the signs of polydipsia/ polyuria, as well as ketoacidosis in about 33% of patients (Syed, 2022). In adults, an appearance of T1DM might be varied or being found without classical signs observed in younger ones. Sometimes, T2DM people may develop diabetic ketoacidosis, especially ethnic minorities), (American Diabetes Association, 2014).

Classical signs of DM involved mainly hyperphagia, polydipsia and polyuria which occur commonly in T1DM, and revealed a rapid progressing for severely hyperglycemic condition with very high levels of hyperglycemia in T2DM (Adinortey, 2017). Extreme weight dropping is only general in T1DM or if T2DM remains undetected for a prolonged period. Unexplained weight loss, fatigue and body aches are also general signs of undiscovered diabetes (Baynes, 2015; Choudhury and Rajeswari, 2022). Symptoms that are mild or develop gradually can also go unnoticed. The symptoms of T1DM and T2DM are similar; however, these symptoms differed in their severity, rapidly developing to T1DM with more typically signs. T1DM some signs comprise weight dropping, urination, fatigue, candidiasis and blurred vision. Macrovascular and microvascular disorders can occur in patients who sensitive to long-lasting T1DM, which including peripheral vascular, heart, and coronary artery disorders (Psoma et al., 2024).

Diagnosis

Identifying diabetic patient through investigation can allow to earliest therapy and more obviously lowering the rate of complication in future. Also, diseased individuals at higher risks such as obese, hypertensive and families with a DM history must be examined frequently (Forbes and Cooper, 2013). Microvascular complications are found in about a quarter of patients with T2DM already having an exact period for diagnosing to indicate their experiences for DM > 5 years (Arnold et al., 2022). As a result, there are various ways of diagnosing Diabetes among individuals. DM can be diagnosed depending on glycosylated hemoglobin (HbA1c) level or plasma glucose level, including two-hour plasma level of glucose (2-h PG) value after 75 gram of oral glucose tolerance test (OGTT) as well as the fasting plasma glucose (FPG), (Karnchanasorn et al., 2016).

Pathogenesis of T2DM

Interactions between risk factors and genetic inheritance are complicated to cause T2DM, such as obesity and sedentary lifestyle, hypo insulin secretion, increased lipolysis, and increased reabsorption of glucose from the kidney, and dysregulated glucose uptake, neurotransmitter imbalance, and increased production of liver glucose (Wu et al., 2014; Galicia-Garcia et al., 2020). Glucagon secretion is a metabolic abnormality reported in hyperglycemia and T2DM (Hædersdal et al., 2023). At an early stage of disease, glucose tolerance could still normally although resistance to insulin due to compensatory oversecretion of insulin by pancreatic islets (Rutter et al., 2015). Eventually, there is impaired glucose tolerance resulting in increased post-prandial glucose (Jarvis et al., 2023). After which, there is a reduction in insulin production which leads to fasting hyperglycemia and the increased production of glucagon (Færch et al., 2016). Insulin resistance (IR) is a status characterized by diminished insulin action in objective tissues, which causes \beta-cells of the pancreas to carry on producing excess insulin, eventually causing its dysfunction through oxidative stress (Newsholme et al., 2019; Rahman et al., 2021). A shortage of tissue response to insulin leads to transient and unexpected hyperglycemia and high insulin levels, along with an inflammatory sign predisposing the person to metabolic syndrome and T2DM (Corkey et al., 2021). IR is a note of gaining weight and a sedentary way of living caused by excess energy consumption, low exercise and some genetic factors (Verdú et al., 2021). The liver

performs a unique role in glucose metabolism, which is essential for systemic glucose homeostasis (Watt et al., 2019). The tissue pathophysiology of T2DM was detailed as following (Figure 1).



Figure (1): Pathophysiology of T2DM

Risk Factors

Environmental, metabolic and genetic are a complicated combination of risk factors for T2DM interacts with each other, affecting its prevalence and contributing to the actual development of the disease (Tremblay and Hamet, 2019). Genetics, environment, lack of exercise, lack of exercise, smoking, alcohol intake, dyslipidemia, desensitization of beta cells, high insulin levels and glucagon activity are the major risk factors of prediabetes and DM development (Alam et al., 2021). These factors are playing a significant impact on insulin resistance, insulin dysfunction and contribute for advancing of DM. However, individuals who are susceptible to diabetes due to fixed risk factors (race, family history / genetic status) have a strong genetic basis; epidemiological studies also show that most T2DM cases can be cured (Zheng et al., 2018). It suggests that it is caused by possible risk factors obesity that is defined as an individual who having 30 kg/m2 of body mass or higher. Excess adipose tissue

is almost dangerous step to diabetic individuals. Increases fat amount with insulin resistant cells is directly related, especially if the fat is concentrated in the abdomen (Gastaldelli, 2011). Inadequate exercise considers as the greater risk factor, among other benefits, as it helps control weight and lower blood sugar levels. In addition, a sedentary lifestyle may increase the risk of T2DM (Colberg et al., 2016). Worldwide, about 90% of patients develop T2DM, which is mainly associated with overweight. Obstructive sleep apnea and sleep disorders are common in obese adults. These are common risk factors for insulin resistance and glucose sensitivity, which together promote obesity and T2DM (DeFronzo et al., 2015; Wondmkun, 2020). Overweight can increase adipose tissue by increasing the secretion of adipokines and resistins, which contributing to T2DM (Wondmkun, 2020). Lack of exercise is a modifiable risk factor because exercise has benefits such as weight control, lowering blood sugar, and many others. In addition, a sedentary lifestyle can increase your risk of T2DM (Magkos et al., 2020).

Management of T2DM

Achieving good metabolic control and long-term maintenance of diabetes requires a combination of lifestyle changes and medications are necessary to achieving near-normal hemoglobin glycosides significantly and risk of macrovascular and microvascular problems will decrease (Musa and Dele, 2020).

Non-pharmacological therapy

Because many patients with T2DM are obese and often suffer from other metabolic disorders associated with insulin resistance syndrome, the main goals of diet and lifestyle changes are weight loss, glycemic control improvement and reduction the risk of coronary heart disease (CHD). Regular physical activities are of great importance for prevention as well as management of T2DM. Diet and physical activity are important elements of energy balance and are considered the basis of diabetes management, and adequate rest is essential to maintain energy and normal health. It is recommended that all people with diabetes get at least 7 hours of sleep per night (Wang et al., 2020; Igwesi-Chidobe et al., 2022; Nguyen et al., 2024).

Pharmacological therapy of T2DM

Patients with T2DM are guided for changing the type of diets, exercises program and gradually shift from monotherapies, dual therapies, or polypharmacy to insulin as the disease progresses. Many types of medications are recommended for the treatment of T2DM. The main drugs commonly used to treat hyperglycemia are sulfonylureas (increasing insulin production in the pancreatic islets), biguanide (decreasing glucose production in the liver), Gamma agonists of peroxisome proliferator-activated receptors (PPAR gamma) (increases insulin) and alpha-glucosidase inhibitors for intestinal glucose absorption, either alone or in combination with other hypoglycemic agents. Diet, lifestyle changes, and increased physical activity with metformin are usually at the forefront of treatment (Rani et al., 2020; Blahova et al., 2021). Metformin suppresses hepatic glycogen synthesis, insulin resistance in adjacent tissues, and increased GLP-1 production. After a meal (increasing insulin secretion), delay the meal. If the previous regimen is ineffective in promoting normoglycemia, sulfonylurea

and meglitinide are usually the next drugs to be tried. Treatment with multiple subcutaneous insulin injections daily is effective in lowering blood sugar levels, and many patients often require insulin therapy if other treatments fail (Timmons and Boyle, 2022; Sheneman et al., 2024). Approximately 50% of patients require insulin therapy within 10 years of being diagnosed with T2DM.

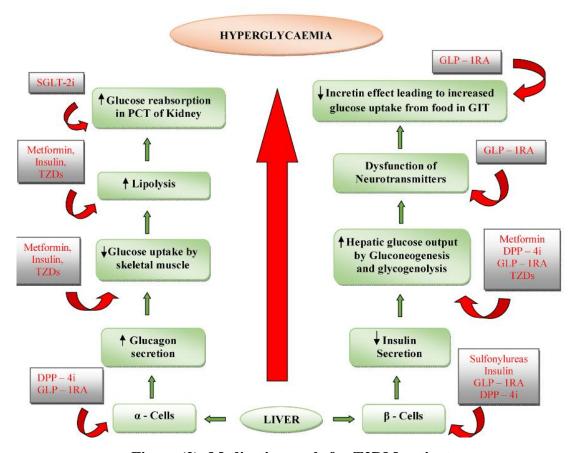


Figure (2): Medication goals for T2DM patients

Complications of T2DM

Diabetes is a disease that causes long-terms of macrovascular complication with development of peripheral vascular diseases, cerebrovascular diseases, and ischemic heart diseases which generally cause a death. At a microvascular level, DM causes visual impairments (retinopathies), renal diseases (nephropathies), as well as nerve cell damages (neuropathies), which most commonly cause chronic kidney diseases and irreversible blindness (Viigimaa et al., 2020). Diabetic retinopathy is one of the most common microvascular complications, followed by diabetic nephropathy and neuropathy (Goldney et al., 2023). All macrovascular problems gradually thin the vessel wall, affecting peripheral, carotid and coronary arteries, elevating the dangerous of heart infarctions, strokes, heart failure, and DM-related atherosclerosis caused by illness. It is also a serious complication of diabetes caused by the neuropathic parts of the lower extremities' micro vessels and macro vessels with peripheral arterial disease (Muzurović and Mikhailidis, 2021).

Microvascular Complications

A. Diabetic Nephropathy (DN)

It is an almost etiology of kidney diseases in developing countries. Elevated albumin has long been considered a marker for DN (Thipsawat, 2021).

B. Diabetic Retinopathy (DR)

It is a condition in which diabetic complications damage the retina, causing permanent eye damage and sometimes loss of vision. If left untreated, this problem can lead to blindness in the patient (Teo et al., 2021). Chronic hyperglycemia promotes the developing DR through increasing the vascular permeability that causes retinal ischemia. DR accounts for 5% of cases of blindness. The visual impairment caused by DR can reduce life quality of DM individuals with increases the treatment cost, which puts a heavy burden on the national health system. Earlier detection and actual managing of DR could be more active in prevention of acute loss of vision and blindness (Kropp et al., 2023).

C. Diabetic Neuropathy

It is considered a nerve damaging due to DM. This is the main chronic problem that affects (30-50%) of diabetics after failing to find other causes. It can affect the peripheral, autonomic and central nervous systems. About 80% of people with distal symmetric sensory neuropathy also experience chronic pain, insufficient restful sleep (Anandhanarayanan et al., 2022; Aktas, 2024).

Macrovascular Complications

By 2030, DM has expected as the seventh cause of death globally. Diabetic complications are primarily associated with peripheral vascular diseases as well as coronary artery disease and heart diseases, with more than half of diabetics causing high morbidity and mortality (Viigimaa et al., 2020). Atherosclerosis secondary to DM causes cerebrovascular disease, which causes death in DM patients with significantly reduces their quality of life. The combination of hyperglycemia and other risk factors like prolonged IR, obesity, hypertension, as well as dyslipidemia could play great roles for advancing of atherosclerosis (Maida et al., 2022; Feingold and Grunfeld, 2023). Peripheral artery disease represents a progressive disease manifested with stenosis and occlusion of medium and large, medium size arteries other than that supply heart or brain (Stone, 2022). It can affect lowered extremities rather than upper extremities vessel. It can cause repetitive fatigue, cramping sensation, or pain called intermittent claudication (Zaib et al., 2021).

References

- 1. Adinortey, M. B. (2017). Biochemicophysiological mechanisms underlying signs and symptoms associated with diabetes mellitus. *Advances in Biological Research*, 11(6), 382-390.
- 2. Aktas, G. (2024). Serum C-reactive protein to albumin ratio as a reliable marker of diabetic neuropathy in type 2 diabetes mellitus. *Biomolecules and biomedicine*, 24(5), 1380.
- 3. Al Dawish, A. M., Alwin Robert, A., Braham, R., Abdallah Al Hayek, A., Al Saeed, A., Ahmed Ahmed, R., and Sulaiman Al Sabaan, F. (2016). Diabetes mellitus in Saudi Arabia: a review of the recent literature. *Current diabetes reviews*, 12(4), 359-368.

- 4. Alam, S., Hasan, M. K., Neaz, S., Hussain, N., Hossain, M. F., and Rahman, T. (2021). Diabetes Mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. *Diabetology*, 2(2), 36-50.
- 5. Alemany, M. (2024). The metabolic syndrome, a human disease. *International journal of molecular sciences*, 25(4), 2251.
- 6. Al-Hetty, H. R. A. K., Jabbar, A. D., Eremin, V. F., Jabbar, A. M., Jalil, A. T., Al-Dulimi, A. G., and Saleh, M. M. (2023). The role of endoplasmic reticulum stress in endometriosis. *Cell Stress and Chaperones*, 28(2), 145-150.
- 7. Al-Sarray, R. A. H., and Al-Shaeli, S. J. J. (2022). Metformin and Bee Venom: a Comparative Detection of Histological Alteration of the Pancreas and Systemic Inflammatory Markers in Diabetic Mice. *Archives of Razi Institute*, 77(6), 2335.
- 8. Al-Shaeli, S. J., and Ethaeb, A. M. (2019). Decaffeinated green tea extract regulates glucose metabolism in insulinsensitive cell lines. *Research Journal of Pharmacy and Technology*, 12(6), 2814-2823.
- 9. Al-Shaeli, S. J. J., Ethaeb, A. M., and Al-Zaidi, E. A. N. (2022). Serological and histological evaluation of the effect of honeybee venom on pancreas and liver in Diabetic Mice. *Archives of Razi Institute*, 77(3), 1125.
- 10. AL-Shaeli, S. J., Ethaeb, A. M., and Gharban, H. A. (2022). Determine the glucose regulatory role of decaffeinated Green Tea extract in reduces the metastasis and cell viability of MCF7 cell line. In AIP Conference Proceedings (Vol. 2394, No. 1). AIP Publishing.
- 11. Al-Shaeli, S. J., Hussen, T. J., and Ethaeb, A. M. (2022). Effect of honey bee venom on the histological changes of testes and hormonal disturbance in diabetic mice. *Veterinary World*, *15*(9), 2357.
- 12. American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. *Diabetes care*, *37*(Supplement_1), S81-S90.
- 13. Anandhanarayanan, A., Teh, K., Goonoo, M., Tesfaye, S., and Selvarajah, D. (2022). Diabetic neuropathies. *Endotext* [Internet].
- 14. Arnold, S. V., Khunti, K., Tang, F., Chen, H., Nicolucci, A., Gomes, M. B., and DISCOVER investigators. (2022). Impact of micro-and macrovascular complications of type 2 diabetes on quality of life: Insights from the DISCOVER prospective cohort study. *Endocrinology, Diabetes and Metabolism*, 5(2), e00321.
- 15. Arokiasamy, P., Salvi, S., and Selvamani, Y. (2021). Global burden of diabetes mellitus. In *Handbook of global health* (pp. 1-44). Cham: Springer International Publishing.
- 16. Baynes, H. W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. *J diabetes metab*, 6(5), 1-9.
- 17. Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., and Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. *Pharmaceuticals*, *14*(8), 806.

- 18. Choudhury, A. A., and Rajeswari, V. D. (2022). Polycystic ovary syndrome (PCOS) increases the risk of subsequent gestational diabetes mellitus (GDM): A novel therapeutic perspective. *Life Sciences*, *310*, 121069.
- 19. Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., and Tate, D. F. (2016). Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. *Diabetes care*, *39*(11), 2065.
- 20. Corkey, B. E., Deeney, J. T., and Merrins, M. J. (2021). What regulates basal insulin secretion and causes hyperinsulinemia?. *Diabetes*, 70(10), 2174-2182.
- 21. DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., and Weiss, R. (2015). Type 2 diabetes mellitus. *Nature reviews Disease primers*, *1*(1), 1-22.
- 22. Dilworth, L., Facey, A., and Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. *International journal of molecular sciences*, 22(14), 7644.
- 23. El-Kebbi, I. M., Bidikian, N. H., Hneiny, L., and Nasrallah, M. P. (2021). Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action. *World journal of diabetes*, *12*(9), 1401.
- 24. Færch, K., Vistisen, D., Pacini, G., Torekov, S. S., Johansen, N. B., Witte, D. R., and Holst, J. J. (2016). Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation. *Diabetes*, 65(11), 3473-3481.
- 25. Farmanfarma, K. K., Ansari-Moghaddam, A., Zareban, I., and Adineh, H. A. (2020). Prevalence of type 2 diabetes in Middle–East: Systematic review and meta-analysis. *Primary care diabetes*, *14*(4), 297-304.
- 26. Feingold, K. R., and Grunfeld, C. (2023). Diabetes and dyslipidemia. In *Diabetes And Cardiovascular Disease* (pp. 425-472). Cham: Springer International Publishing.
- 27. Forbes, J. M., and Cooper, M. E. (2013). Mechanisms of diabetic complications. *Physiological reviews*, *93*(1), 137-188.
- 28. Forlenza, G. P., Vigers, T., Berget, C., Messer, L. H., Lal, R. A., Basina, M., and Pyle, L. (2022). Predicting success with a first-generation hybrid closed-loop artificial pancreas system among children, adolescents, and young adults with type 1 diabetes: a model development and validation study. *Diabetes Technology and Therapeutics*, 24(3), 157-166.
- 29. Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., and Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. *International journal of molecular sciences*, 21(17), 6275.
- 30. Gastaldelli, A. (2011). Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. *Diabetes research and clinical practice*, *93*, S60-S65.

- 31. Gharban, H. A., Al-Ghuraibawi, H. N., Al-Rubaye, Z. A., Jahlol, H. A., Al-Zergany, A. A., and Al-Abedi, G. J. (2023). Most Clinically Detected Viral Diseases in Field Animals of Wasit Province, Iraq. *Annals of the Romanian Society for Cell Biology*, 27(01), 154-168.
- 32. Goldney, J., Sargeant, J. A., and Davies, M. J. (2023). Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. *Diabetologia*, 66(10), 1832-1845.
- 33. Hædersdal, S., Andersen, A., Knop, F. K., and Vilsbøll, T. (2023). Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. *Nature Reviews Endocrinology*, 19(6), 321-335.
- 34. Hameed, I., Masoodi, S. R., Mir, S. A., Nabi, M., Ghazanfar, K., and Ganai, B. A. (2015). Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. *World journal of diabetes*, *6*(4), 598.
- 35. Igwesi-Chidobe, C. N., Okechi, P. C., Emmanuel, G. N., and Ozumba, B. C. (2022). Community-based non-pharmacological interventions for pregnant women with gestational diabetes mellitus: a systematic review. *BMC Women's Health*, 22(1), 482.
- 36. Jarvis, P. R., Cardin, J. L., Nisevich-Bede, P. M., and McCarter, J. P. (2023). Continuous glucose monitoring in a healthy population: understanding the post-prandial glycemic response in individuals without diabetes mellitus. *Metabolism*, 155640.
- 37. Karnchanasorn, R., Huang, J., Ou, H. Y., Feng, W., Chuang, L. M., Chiu, K. C., and Samoa, R. (2016). Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration. *Journal of diabetes research*, 2016(1), 6195494.
- 38. Kharroubi, A. T., and Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. *World journal of diabetes*, 6(6), 850.
- 39. Kropp, M., Golubnitschaja, O., Mazurakova, A., Koklesova, L., Sargheini, N., Vo, T. T. K. S., and Thumann, G. (2023). Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. *Epma Journal*, *14*(1), 21-42.
- 40. Magkos, F., Hjorth, M. F., and Astrup, A. (2020). Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. *Nature Reviews Endocrinology*, *16*(10), 545-555.
- 41. Maida, C. D., Daidone, M., Pacinella, G., Norrito, R. L., Pinto, A., and Tuttolomondo, A. (2022). Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases. *International Journal of Molecular Sciences*, 23(4), 2397.
- 42. Musa, T., and Dele, M. (2020). Diabetes mellitus: Strategies to delay the onset and its management options. *Biokemistri*, 32(3).

- 43. Muzurović, E. M., and Mikhailidis, D. P. (2021). Diabetes Mellitus and Noncardiac Atherosclerotic Vascular Disease—Pathogenesis and Pharmacological Treatment Options. *Journal of Cardiovascular Pharmacology and Therapeutics*, 26(1), 25-39.
- 44. Newsholme, P., Keane, K. N., Carlessi, R., and Cruzat, V. (2019). Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. *American Journal of Physiology-Cell Physiology*, 317(3), C420-C433.
- 45. Nguyen, H. G., Nguyen, K. T. H., and Nguyen, P. N. (2024). Non-Pharmacological Management of Gestational Diabetes Mellitus with a High Fasting Glycemic Parameter: A Hospital-Based Study in Vietnam. *Journal of Clinical Medicine*, *13*(19), 5895.
- 46. Psoma, O., Makris, M., Tselepis, A., and Tsimihodimos, V. (2024). Short-term glycemic variability and its association with macrovascular and microvascular complications in patients with diabetes. *Journal of Diabetes Science and Technology*, *18*(4), 956-967.
- 47. Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., and Pang, M. G. (2021). Role of insulin in health and disease: an update. *International journal of molecular sciences*, 22(12), 6403.
- 48. Rani, P., Mishra, A. R., and Mardani, A. (2020). An extended Pythagorean fuzzy complex proportional assessment approach with new entropy and score function: Application in pharmacological therapy selection for type 2 diabetes. *Applied Soft Computing*, 94, 106441.
- 49. Rutter, G. A., Pullen, T. J., Hodson, D. J., and Martinez-Sanchez, A. (2015). Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. *Biochemical Journal*, 466(2), 203-218.
- 50. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., and IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. *Diabetes research and clinical practice*, 157, 107843.
- 51. Saleem, H. D., Razooqi, M. A., and Gharban, H. A. J. (2021). Cumulative effect of subclinical mastitis on immunological and biochemical parameters in cow milk. *Archives of Razi Institute*, 76(6), 1629.
- 52. Sarkar, B. K., Akter, R., Das, J., Das, A., Modak, P., Halder, S., and Kundu, S. K. (2019). Diabetes mellitus: A comprehensive review. *Journal of Pharmacognosy and Phytochemistry*, 8(6), 2362-2371.
- 53. Sheneman, M., Murray, B. P., and Carpenter, J. E. (2024). 4 Unrelenting Insulin Release: Sulfonylurea/Meglitinide Overdose. *Medical Toxicology*, 41.
- 54. Stone, J. R. (2022). Diseases of small and medium-sized blood vessels. In *Cardiovascular pathology* (pp. 307-351). Academic Press.
- 55. Syed, F. Z. (2022). Type 1 diabetes mellitus. *Annals of internal medicine*, 175(3), ITC33-ITC48.

- 56. Szablewski, L. (2014). Role of immune system in type 1 diabetes mellitus pathogenesis. *International immunopharmacology*, 22(1), 182-191.
- 57. Teo, Z. L., Tham, Y. C., Yu, M., Chee, M. L., Rim, T. H., Cheung, N., and Cheng, C. Y. (2021). Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. *Ophthalmology*, *128*(11), 1580-1591.
- 58. Thipsawat, S. (2021). Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. *Diabetes and Vascular Disease Research*, 18(6), 14791641211058856.
- 59. Timmons and, J., and Boyle, J. (2022). Sulfonylureas and Meglitinides. *Diabetes Drug Notes*, 49-66.
- 60. Tremblay, J., and Hamet, P. (2019). Environmental and genetic contributions to diabetes. *Metabolism*, 100, 153952.
- 61. Verdú, E., Homs, J., and Boadas-Vaello, P. (2021). Physiological changes and pathological pain associated with sedentary lifestyle-induced body systems fat accumulation and their modulation by physical exercise. *International journal of environmental research and public health*, *18*(24), 13333.
- 62. Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., and Titma, T. (2020). Macrovascular complications of type 2 diabetes mellitus. *Current vascular pharmacology*, *18*(2), 110-116.
- 63. Wang, X., Kang, J., Liu, Q., Tong, T., and Quan, H. (2020). Fighting diabetes mellitus: Pharmacological and non-pharmacological approaches. *Current Pharmaceutical Design*, 26(39), 4992-5001.
- 64. Watt, M. J., Miotto, P. M., De Nardo, W., and Montgomery, M. K. (2019). The liver as an endocrine organ—linking NAFLD and insulin resistance. *Endocrine reviews*, 40(5), 1367-1393.
- 65. Wilcox, N. S., Rui, J., Hebrok, M., and Herold, K. C. (2016). Life and death of β cells in Type 1 diabetes: A comprehensive review. *Journal of autoimmunity*, 71, 51-58.
- 66. Wondmkun, Y. T. (2020). Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. *Diabetes, Metabolic Syndrome and Obesity*, 3611-3616.
- 67. Wu, Y., Ding, Y., Tanaka, Y., and Zhang, W. (2014). Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. *International journal of medical sciences*, 11(11), 1185.
- 68. Yıldırım, D. İ., and Marakoğlu, K. (2018). Complementary and alternative medicine use amongst Turkish type 2 diabetic patients: a cross-sectional study. *Complementary therapies in medicine*, 41, 41-46.
- 69. Zaib, S., Talib, M. A., Ahmad, S., Arif, A., Mustafa, F., Junaid, M., and Khan, I. (2021). Diabetes and its Association with Peripheral Arterial Disease. *Biomedical Journal of Scientific and Technical Research*, 37(5), 29735-29746.

- 70. Zhao, X., An, X., Yang, C., Sun, W., Ji, H., and Lian, F. (2023). The crucial role and mechanism of insulin resistance in metabolic disease. *Frontiers in endocrinology*, *14*, 1149239.
- 71. Zheng, Y., Ley, S. H., and Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. *Nature reviews endocrinology*, *14*(2), 88-98.