Molecular expression of *mecA* gene in *Staphylococcus* aureus isolated from diabetic foot ulcers

Estabraq A.N. Al-Zaidi

Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq Email: istabraq324@uowasit.edu.iq

ORCID: https://orcid.org/0009-0006-5030-6798

Abstract

Background: The *mecA* gene is a mobile genetic element contains various structures that encoded resistance to non-β-lactam antibiotics.

Aims: Finding the molecular characterization of *mecA* gene in clinical isolates of *S. aureus* obtained from the ulcers of diabetic foot patients with estimating their susceptibility to various antibiotics.

Materials and methods: Swabs of totally 58 diabetic foot ulcers were collected and inoculated in Mannitol salt agar, and then, the isolates of *S. aureus* were confirmed biochemically. Antibiotic susceptibility was performed using the disk diffusion test among an overall 12 types of antibiotics. Molecular PCR assaying was carried out targeting the *mecA* gene.

Results: The findings of traditional isolation and biochemical confirmation revealed the presence of 39.66% positive *S. aureus* isolates. The antibiotic susceptibility testing using the Kirby-Bauer disk diffusion shown that the positive *S. aureus* isolates were significantly sensitive to Nitrofurantoin (86.96%), Oxacillin (82.61%), Ofloxacin (69.57%), and Rifampin (56.52%); but highly resistant to Ampcillin (82.61%), Meropenem (82.61%), Amoxcillin (73.91%), Cephalexin (69.57%), Cefotaxim (60.87%), Ciprofloxacin (60.87%), and Methicillin (60.87%). Targeting the *mecA* gene, molecular testing of 23 positive *S. aureus* isolates by PCR assay detected that 34.78% were positives.

Conclusion: The presence of resistance and virulence genes can affect significantly on the pattern of sensitivity to antibiotics, especially with increasing of antibiotic resistance. Hence, the using of molecular assay in diagnosis of various resistance and virulence genes can support the cure rate.

Keywords: Conventional PCR, Diabetes mellitus, MRSA, Antibiotic susceptibility, Virulence factors, Iraq

Introduction

Staphylococcus aureus strains resistant to methicillin and many other antibiotics are major causes of nosocomial infections worldwide. Resistance to various antibiotic in particular methicillin was determined by the *mecA* gene, which encodes the low-affinity penicillin-binding protein PBP 2A (Ibraheim et al., 2023a, b). The *mecA* gene is part of a 21- to 60-kb staphylococcal chromosome cassette *mec* (SCC*mec*), a mobile genetic element that may also

contain genetic structures such as Tn554, pUB110, and pT181 which encode resistance to nonβ-lactam antibiotics (Wielders et al., 2002; Pantosti et al., 2007). Two hypotheses have been raised to explain the evolutionary origin of methicillin-resistant S. aureus (MRSA) strains. The single clone hypothesis, based on early analyses of the restriction fragment length polymorphisms obtained for MRSA isolates collected worldwide by using probes for mecA and Tn554, suggests that mecA entered the S. aureus population on one occasion and resulted in the formation of a single MRSA clone that has since spread around the world. The second hypothesis, based on the detection of mecA in diverse S. aureus multilocus enzyme electrophoresis types, proposes that MRSA strains evolved a number of times by means of the horizontal transfer of mecA into phylogenetically distinct methicillin-susceptible S. aureus (MSSA) precursor strains (Harkins et al., 2017; Lakhundi and Zhang, 2018; Chen et al., 2023). By using DNA microarray technology, mecA has been detected in at least five divergent lineages, implying that horizontal mecA transfer has played a fundamental role in the evolution of MRSA. The transfer of mecA from S. epidermidis to S. aureus was recently witnessed in vivo, suggesting that mecA may transfer more frequently to MSSA (Monecke et al., 2016; Earls et al., 2017).

The prevalence of MRSA in the community is predicted to increase substantially due to the dissemination of a successful SCCmec type by horizontal transfer (Steinig et al., 2019). Locally, a study conducted at the Maternity and Children teaching hospital and Al Diwaniya teaching hospital in Iraq, S. aureus isolates from different cases were found to be highly resistant to the usually used antibiotics (Al-Saadi and Abd Al-Mayahi, 2021). Another Iraqi study revealed that MRSA strains were resistant to various antibiotics such as azithromycin, methicillin, and ciprofloxacin, but not to ceftaroline (Alwash and Abed Aburesha, 2021). The pathogenicity of MRSA strains relies on several virulence factors; for example, hemolysins which lead to development of diseases and are categorized into three types: alpha (a), beta (β) and gamma (γ) . The alpha hemolysin is a toxin produced by the Hla gene of S. aureus acting as a virulence factor that forms pores in cell membranes, disrupting epithelial barriers and leading to cell lysis and death (Moraveji et al., 2014; Zainulabdeen and Dakl, 2021). Therefore, the current study aims to find the molecular characterization of mecA gene in clinical isolates of S. aureus obtained from the patients of diabetic foot ulcers, and to estimate the susceptibility of S. aureus isolates to various antibiotics.

Materials and methods

Ethical approval

This study was licensed by the Scientific Committee of the College of Veterinary Medicine in University of Wasit (Wasit, Iraq).

Collection of samples and isolation of S. aureus

A total of 58 diabetic foot ulcer patients who attended to private clinics located in different areas in Wasit province (Iraq) were subjected to sampling of ulcer swabs under aseptic conditions. The swabs were kept in tubes containing transport media and inoculated in Mannitol salt agar plates that incubated overnight at 37°C.

Received 30 July 2024; Accepted 15 August 2024

Biochemical testing

The suspected *S. aureus* colonies were tested additionally using catalase, oxidase, and coagulase assays.

Antibacterial susceptibility testing

The method used to detect the antibiotic susceptibility was the disk diffusion test. The culture was incubated on a Muller-Hinton agar plate for 24 hours at 37°C, and the test was performed for all *S. aureus* isolates using the 12 types of antibiotics: Amoxicillin (25μg), Ampicillin (25μg), Azithromycin (15μg), Cefotaxime (10μg), Cephalexin (30μg), Ciprofloxacin (10μg), Meropenem (30μg), Methicillin (10μg), Nitrofurantoin (100μg), Ofloxacin (5μg), Oxacillin (5μg), Rifampin (5μg), and Trimethoprim (10μg) using the Kirby-Bauer disk diffusion (CLIS, 2017).

Molecular analyses

At first, a DNA kit (Geneaid, USA) was used to extract the genomic DNA of all suspected isolates in accordance with the manufacturer's instructions. The PCR MasterMix tubes were prepared for amplification gene primers according to the gene-specific primers (Table 1). The PCR tubes were transferred to a thermal cycler for an amplification reaction (Table 2). PCR products were electrophoresed on 1.5% agarose gel and visualized by ultraviolet (UV) light transilluminator to detect the positive samples at 538bp product size.

Table (1): Primers designed to detect the *mecA* gene in *S. aureus*

Gene	Sequence	Product size	Reference
mecA	F: 5'-CCCAATTTGTCTGCCAGTTT-3'	538bp	Laub et al. (2017)
	R: 5´-ATCTTGGGGTGGTTACAACG-3´		

Table (2): Thermal cycler conditions for amplifying of PCR products

Steps	Temperature (°C)	Time (min)	No. of cycles
Initial denaturation	95	5	1
Denaturation	95	0.5	
Annealing	56	0.5	35
Extension	72	1	
Final extension	72	10	1

Statistical analysis

One-Way Analysis of Variance (ANOVA) and t-test in the GraphPad Prism Software (version 8) were used to statistical analysis of obtained data, and detect significant differences between the obtained values [number (percentage)] at p<0.05 (*), p<0.01 (***), p<0.001 (****), and p<0.0001 (*****), (Gharban, 2022, 2024; Hussen et al., 2024).

Results

The findings of traditional isolation and biochemical confirmation revealed the presence of 39.66% (23/58) positive *S. aureus* isolates (Figure 1). Targeting the *mecA* gene, molecular testing of 23 positive *S. aureus* isolates by PCR assay detected that 34.78% (total no= 8) were positives (Figure 2).

The antibiotic susceptibility testing using the Kirby-Bauer disk diffusion shown that the positive *S. aureus* isolates were significantly sensitive to Nitrofurantoin (86.96%), Oxacillin (82.61%), Ofloxacin (69.57%), and Rifampin (56.52%); but highly resistant to Ampcillin (82.61%), Meropenem (82.61%), Amoxcillin (73.91%), Cephalexin (69.57%), Cefotaxim (60.87%), Ciprofloxacin (60.87%), and Methicillin (60.87%), (Table 3).

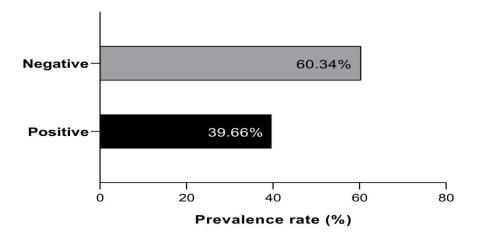


Figure (1): Total prevalence rate (%) of *S. aureus* isolates from ulcers of diabetic foot patients by culture

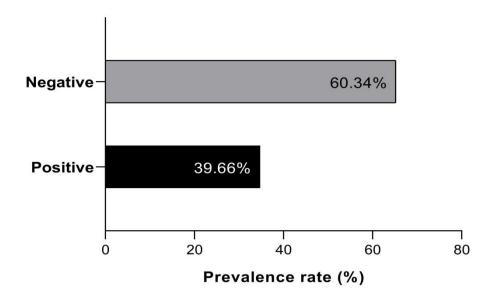


Figure (2): Positive S. aureus isolates to mecA gene

Table (3): Antibiotic susceptibility testing of 23 positive S. aureus isolates

Antibiotics	Sensitive	Intermediate	Resistance
	No. (%)	No. (%)	No. (%)
Amoxcillin	2 (8.7%)	4 (17.39%)	17 (73.91%)
Ampcillin	1 (4.35%)	3 (13.04%)	19 (82.61%)
Azithromycin	9 (39.13%)	8 (34.78%)	6 (26.09%)
Cefotaxim	4 (17.39%)	5 (21.74%)	14 (60.87%)
Cephalexin	5 (21.74%)	2 (8.7%)	16 (69.57%)
Ciprofloxacin	2 (8.7%)	7 (30.43%)	14 (60.87%)
Meropenem	4 (17.39%)	0 (0%)	19 (82.61%)
Methicillin	3 (13.04%)	6 (26.09%)	14 (60.87%)
Nitrofurantoin	20 (86.96%)	1 (4.35%)	2 (8.7%)
Ofloxacin	16 (69.57%)	6 (26.09%)	1 (4.35%)
Oxacillin	19 (82.61%)	3 (13.04%)	1 (4.35%)
Rifampin	13 (56.52%)	5 (21.74%)	5 (21.74%)
Trimethoprim	10 (43.48%)	2 (8.7%)	11 (47.83%)
p-value	0.0001 ****	0.001 ***	0.0001 ****

Discussion

Foot ulcers are common in diabetic patients. Its prevalence varies between 15% and 25% (Singh wt al., 2005). Infection of these ulcers is a frequent (40%-80%) complication representing a major cause of mortality and morbidity (Prompers et al., 2008). It is estimated to be the most common reason of lower-limb amputations (Moulik et al., 2003; Pemayun et al., 2015; Lin et al., 2020). The pathophysiology of diabetic foot infection is quite complex. The prevalence and severity are a consequence of host-related processes (e.g., immunopathy, neuropathy and arteriopathy) and pathogen-related factors (e.g., virulence, antibiotic-resistance and microbial organization) (Dunyach-Remy et al., 2016). *Staphylococcus aureus* is a prevalent pathogen responsible for a wide range of infections, from mild skin conditions to life-threatening systemic diseases (Pal et al., 2023).

The ability of *S. aureus* to cause diabetic foot infection is defined by numerous virulence factors among which secreted toxins play an important role (participation in colonization, persistence, evasion of the immune system and dissemination). These toxins include: the poreforming toxins, the exfoliatins, the superantigen exotoxins and the epidermal cell differentiation

Received 30 July 2024; Accepted 15 August 2024

inhibitors toxins. These cytolytic toxins can damage membranes of host cells leading to cell lysis. Hemolysins lyse redblood cells, while leukotoxins target white blood cells (Yoong and Torres, 2013; Otto, 2014; Shettigar and Murali, 2020; Ahmad-Mansour et al., 2021). In this study, 39.66% of diabetic foot ulcers were positively infected with S. aureus (Singh and Apte, 2014). Many diabetic foot infections are superficial at presentation. However, bacteria can spread to subcutaneous tissues, including tendons, joints, fascia, muscle and bone (Armstrong and Lipsky, 2004; Mendes and Neves, 2012). Diabetic foot infections were classified by their clinical severity, ranging from mild (~35% of cases, depending on site of presentation), through moderate (~30-60%), to severe (~5-25%), (Lipsky et al., 2016). It was proposed simple clinical criteria for classifying the infection of diabetic foot ulcer based on classical signs and symptoms of inflammation (Schaper, 2004; Lipsky et al., 2012a, b). This scheme helps to predict whether hospitalization would be required and the clinical outcome. Moreover, various factors have been suggested as markers of diabetic foot infection when classical signs are not obvious. These include the identification of friable or discolored granulation tissue, necrosis, fetid odor, non-purulent secretions, delay in healing despite otherwise adequate ulcer management and the discovery of unexplained hyperglycemia (Lipsky et al., 2016). Interestingly, neither toxic shock syndrome nor toxinogenic manifestations could be clearly diagnosed in diabetic foot infection (Dunyach-Remy et al., 2016; Rasigade et al., 2016). In Occidental countries, Gram-positive aerobic cocci are the main microorganisms responsible for diabetic foot infection with S. aureus the most commonly isolated bacteria, alone or in combination, in superficial or deep infection (David and Daum, 2017). In warmer countries, particularly in Asia and Africa, Gram-negative bacilli are more prevalent, and many cases of deep infections are polymicrobial. Also in this case, S. aureus is the main isolated bacteria, present in 30%–60% of cases (Dunyach-Remy et al., 2016; Lipsky et al., 2016).

Molecular findings of the current study found that 34.78% of S. aureus isolates were positively having the *mecA* gene. The rise of antibiotic-resistant strains, particularly MRSA, poses a significant challenge to healthcare systems worldwide (Guo et al., 2020). A key factor in the success of this opportunistic pathogen is its ability to adapt and evolve, often through the acquisition of genetic elements that confer antibiotic resistance (Sangappa and Thiagarajan, 2012; Alibayov et al., 2014a, b). One of the most notable examples of this is the mecA gene, which is responsible for methicillin resistance in S. aureus. The mecA gene is a mobile genetic element that encodes a modified penicillin-binding protein, which has a reduced affinity for beta-lactam antibiotics, rendering them ineffective (Ibraheim et al., 2023a, b). The acquisition of the mecA gene has facilitated the emergence of community-acquired and healthcareassociated MRSA strains, which are of significant concern due to their ability to spread rapidly and cause severe infections that are challenging to treat (Romero and de Souza, 2021). This result agreed with another study in Iran that showed all MRSA isolates from wound samples harboring mecA gene (Alkhafaji et al., 2019); while, another studies in Iran were showed 45.1% and 22.7% of isolates were methicillin resistant and the mecA gene was detected in these isolates, respectively (Ghasemian et al., 2015; Pournajaf et al., 2014). In India, Kali et al. (2014) obtained 90.1% positive S. aureus isolates to mecA gene. Alfatemi et al. (2014) reported that

the prevalence of MRSA was 42.3%. In Kurdistan showed that 50.4% of isolates were carrying the *mecA* gene (Hussein et al., 2019). In Pakistan, Siddiqui et al. (2018) showed that the prevalence rate of positive *S. aureus* isolates to *mecA* was 35%.

Our findings showed that the positive S. aureus isolates were significantly sensitive to Nitrofurantoin (86.96%), Oxacillin (82.61%), Ofloxacin (69.57%), and Rifampin (56.52%); but highly resistant to Ampcillin (82.61%), Meropenem (82.61%), Amoxcillin (73.91%), Cephalexin (69.57%), Cefotaxim (60.87%), Ciprofloxacin (60.87%), and Methicillin (60.87%). In comparison to results of various studies in Iraq, AL-Khozai (2016) showed that S. aureus isolates have a high resistance to Amoxicillin (100%), and Ampicillin (100%), and Cefotaxime (72.7%) but not to Meropenem (20.0%). In Erbil, authors have been showed a high resistance (93.42%) to Methicillin and Cephalexin (53.95%), (Rafiq et al., 2017). In another study, S. aureus isolates were shown a high resistance level to Methicillin (100%), Ampcillin (98%), Amoxcillin (98%), Cephalexin (95%), Cefotaxim (91.7%), Azithromycin (77.09%) but high low resistance to Meropenem (14.59%), (Refaat et al., 2022). In Iran, Rahimi et al. (2009) showed that 78% of *S. aureus* isolates were resistant to Methicillin, 99% of them were resistant to Ampicillin, and 62% were resistant to Cefotaxime. Momtaz and Hafezi (2014) showed that 62.12% of S. aureus isolates were resistant to Azithromycin. The large difference in prevalence rates between different countries may reflect the fact that the infection control policy and other factors in this field differ. With increasing of MRSA colonization rate, there is greater risk in developing drug-resistant wound infections. Therefore, it is necessary to avoid infection as much as possible. Resistance to antibiotics is associated with an increased time of hospitalization, treatment costs and high mortality, including a need for alternative medications.

Conclusion

Diabetic foot ulcers are extremely vulnerable to bacterial infections that can result in lower limb amputations and even death. Though from a clinician's perspective, it is important to differentiate colonization from infection, it might prove cumbersome in diabetic foot ulcers due to the underlying effects of neuropathy and/or ischemia. The polymicrobial community in diabetic foot infection further contributes to synergistic interaction between wound pathogens and induces various virulence traits and modulates host immunity and overall wound deterioration. Prompt recognition of worsening ulcers using predictive molecular markers will hence considerably help in preventing lower limb amputations. Distribution of isolates into different clonal complexes allows comparison between colonizing and infecting strains as well as determining the origin and clonality of the strains infecting wound ulcers. Detection of specific virulence encoding genes along with clonality in different grades will help us in identifying *S. aureus* strains that could cause severe negative wound outcome in diabetic foot infection and also to avoid misuse of antibiotic therapy in uninfected wounds.

Acknowledgment

Special thanks have granted to the Dean (Prof. Dr. Sattar R.S. Al-Eqabi) and the Scientific Committee of the College of Veterinary Medicine-University of Wasit, for all scientific support to complete the current study.

References

- [1] Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., and Molle, V. (2021). Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. *Toxins*, *13*(10), 677.
- [2] Alfatemi, S. M. H., Motamedifar, M., Hadi, N., and Saraie, H. S. E. (2014). Analysis of virulence genes among methicillin resistant Staphylococcus aureus (MRSA) strains. *Jundishapur journal of microbiology*, 7(6).
- [3] Alibayov, B., Baba-Moussa, L., Sina, H., Zdeňková, K., and Demnerová, K. (2014a). Staphylococcus aureus mobile genetic elements. *Molecular biology reports*, 41, 5005-5018.
- [4] Alibayov, B., Zdeňková, K., Purkrtová, S., Demnerová, K., and Karpíšková, R. (2014b). Detection of some phenotypic and genotypic characteristics of Staphylococcus aureus isolated from food items in the Czech Republic. *Annals of microbiology*, 64, 1587-1596.
- [5] Al-Khafaji, N. S., Kadhum, S. A., and Al-Dahmoshi, H. O. (2019). PCR-based investigation of enterotoxin profile among Staphylococcus Aureus isolated from women with vaginosis. *EurAsian Journal of BioSciences*, *13*(2), 1979-1984.
- [6] AL-Khozai, Z. M. (2016). Phages isolated Staphylococcus aureus resistant to methicillin and can be used in bioremediation against hosts. *Al-Qadisiyah Journal of Pure Science*, *4*(21).
- [7] Al-Saadi, D. A. A., and Abd Al-Mayahi, F. S. (2021, November). Antibiogram susceptibility patterns of Staphylococcus aureus harboring of MecA gene and prevalence aminoglycoside modifying enzymes (AMEs) genes in Iraq. In *IOP Conference Series: Earth and Environmental Science* (Vol. 923, No. 1, p. 012049). IOP Publishing.
- [8] Alwash, J.S., and Abed Aburesha, R. (2021). The Differences in Antibiotic-resistance among Several Staphylococcus aureus strains in Iraq. *Medico-legal Update*, 21(3).
- [9] Armstrong, D. G., and Lipsky, B. A. (2004). Diabetic foot infections: stepwise medical and surgical management. *International wound journal*, *I*(2), 123-132.
- [10] Chen, Q., Zhao, G., Yang, W., Chen, F., Qi, Y., and Lou, Z. (2023). Investigation into the prevalence of enterotoxin genes and genetic background of Staphylococcus aureus isolates from retain foods in Hangzhou, China. *BMC microbiology*, 23(1), 294.
- [11] CLSI (2017) Performance Standard for Antimicrobial Susceptibility Testing. 27th Ed. CSLI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. Pp: 32-41.
- [12] David, M. Z., and Daum, R. S. (2017). Treatment of Staphylococcus aureus infections. Staphylococcus aureus: microbiology, pathology, immunology, therapy and prophylaxis, 325-383.
- [13] Dunyach-Remy, C., Ngba Essebe, C., Sotto, A., and Lavigne, J. P. (2016). Staphylococcus aureus toxins and diabetic foot ulcers: role in pathogenesis and interest

- in diagnosis. Toxins, 8(7), 209.
- [14] Dunyach-Remy, C., Ngba Essebe, C., Sotto, A., and Lavigne, J. P. (2016). Staphylococcus aureus toxins and diabetic foot ulcers: role in pathogenesis and interest in diagnosis. *Toxins*, 8(7), 209.
- [15] Earls, M. R., Kinnevey, P. M., Brennan, G. I., Lazaris, A., Skally, M., O'Connell, B., and Coleman, D. C. (2017). The recent emergence in hospitals of multidrug-resistant community-associated sequence type 1 and spa type t127 methicillin-resistant Staphylococcus aureus investigated by whole-genome sequencing: Implications for screening. *PLoS One*, 12(4), e0175542.
- [16] Gharban, H.A. (2022). Clinical and serological diagnosis of bovine hypodermosis in Wasit Province. *Revista Electronica de Veterinaria*, 457-466.
- [17] Gharban, H.A. (2024) First genotyping confirmation of Pichia kudriavzevii in subclinically mastitic cows in Iraq. *Rev. Ciênc. Agrovet.*, 23 (3): 529-536.
- [18] Ghasemian, A., Najar Peerayeh, S., Bakhshi, B., and Mirzaee, M. (2015). Several virulence factors of multidrug-resistant Staphylococcus aureus isolates from hospitalized patients in Tehran. *Int J Enteric Pathog*, *3*(2), 1-6.
- [19] Guo, Y., Song, G., Sun, M., Wang, J., and Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. *Frontiers in cellular and infection microbiology*, *10*, 107.
- [20] Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., and Holden, M. T. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. *Genome biology*, *18*, 1-11.
- [21] Hussein, N., Salih, R. S., and Rasheed, N. A. (2019). Prevalence of methicillin-resistant Staphylococcus aureus in hospitals and community in Duhok, Kurdistan region of Iraq. *International Journal of Infection*, 6(2).
- [22] Hussen, T.J., Al-Shaeli, S.J.J., Al-Mahna, B.H.R., and Gharban, H.A.J. (2024). Biochemical and histological effects of long-term administration of estrogen on female mice. *Adv.Anim.Vet.Sci*, *12*(8), 1563-1572.
- [23] Ibraheim, H.K., Fayez, R.A., Jasim, A.S., and Gharban, H.A. (2023a). Role of nuc gene in Staphylococcus aureus to phagocytic activity in different cattle infections. *Open Veterinary Journal*, 13(8), 1021-1026.
- [24] Ibraheim, H.K., Madhi, K.S., Baqer, G.K., and Gharban, H.A. (2023b). Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. *Veterinary World*, *16*(3), 491.
- [25] Kali, A., Stephen, S., and Umadevi, S. (2014). Laboratory evaluation of phenotypic detection methods of methicillin-resistant Staphylococcus aureus. *Biomedical journal*, 37(6).
- [26] Lakhundi, S., and Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus:

- molecular characterization, evolution, and epidemiology. *Clinical microbiology reviews*, 31(4), 10-1128.
- [27] Laub, K., Tothpál, A.D., Kardos, S., and Dobay, O. (2017). Epidemiology and antibiotic sensitivity of Staphylococcus aureus nasal carriage in children in Hungary. *Acta Microbiologica et Immunologica Hungarica*, 64(1), 51-62.
- [28] Lin, C., Liu, J., and Sun, H. (2020). Risk factors for lower extremity amputation in patients with diabetic foot ulcers: A meta-analysis. *PloS one*, *15*(9), e0239236.
- [29] Lipsky, B. A., Aragón-Sánchez, J., Diggle, M., Embil, J., Kono, S., Lavery, L., and Peters, E. J. (2016). IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. *Diabetes Metab Res Rev*, 32(Suppl 1), 45-74.
- [30] Lipsky, B. A., Berendt, A. R., Cornia, P. B., Pile, J. C., Peters, E. J., Armstrong, D. G., and Senneville, E. (2012a). Executive summary: 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. *Clinical Infectious Diseases*, 54(12), 1679-1684.
- [31] Lipsky, B. A., Peters, E. J. G., Senneville, E., Berendt, A. R., Embil, J. M., Lavery, L. A., and Jeffcoate, W. J. (2012b). Expert opinion on the management of infections in the diabetic foot. *Diabetes/metabolism research and reviews*, 28, 163-178.
- [32] Mendes, J. J., and Neves, J. (2012). Diabetic foot infections: current diagnosis and treatment. *Journal of Diabetic Foot Complications*, 26-45.
- [33] Momtaz, H., and Hafezi, L. (2014). Meticillin-resistant Staphylococcus aureus isolated from Iranian hospitals: virulence factors and antibiotic resistance properties. *Bosnian journal of basic medical sciences*, *14*(4), 219.
- [34] Monecke, S., Gavier-Widen, D., Hotzel, H., Peters, M., Guenther, S., Lazaris, A., and Ehricht, R. (2016). Diversity of Staphylococcus aureus isolates in European wildlife. *PLoS One*, *11*(12), e0168433.
- [35] Moraveji, Z., Tabatabaei, M., Shirzad Aski, H., and Khoshbakht, R. (2014). Characterization of hemolysins of Staphylococcus strains isolated from human and bovine, southern Iran. *Iranian journal of veterinary research*, 15(4), 326-330.
- [36] Moulik, P. K., Mtonga, R., and Gill, G. V. (2003). Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. *Diabetes care*, 26(2), 491-494.
- [37] Otto, M. (2014). Staphylococcus aureus toxins. *Current opinion in microbiology*, *17*, 32-37.
- [38] Pal, M., Shuramo, M. Y., Tewari, A., Srivastava, J. P., and Steinmetz, C. H. (2023). Staphylococcus aureus from a commensal to zoonotic pathogen: a critical appraisal. *Int. J. Clin. Exp. Med. Res*, 7, 220-228.
- [39] Pantosti, A., Sanchini, A., and Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. *Future microbiology*, 2(3), 323-334.

- [40] Pemayun, T. G. D., Naibaho, R. M., Novitasari, D., Amin, N., and Minuljo, T. T. (2015). Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a hospital-based case—control study. *Diabetic foot and ankle*, *6*(1), 29629.
- [41] Pournajaf, A., Ardebili, A., Goudarzi, L., Khodabandeh, M., Narimani, T., and Abbaszadeh, H. (2014). PCR-based identification of methicillin–resistant Staphylococcus aureus strains and their antibiotic resistance profiles. *Asian pacific journal of tropical biomedicine*, *4*, S293-S297.
- [42] Prompers, L., Schaper, N., Apelqvist, J., Edmonds, M., Jude, E., Mauricio, D., and Huijberts, M. (2008). Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. *Diabetologia*, *51*, 747-755.
- [43] Rafiq, S., MH Salih, R., and A HAMAD, P. (2017). Vancomycin resistance among methicillin resistant Staphylococcus aureus isolated from clinical samples in Erbil city, Iraq. *Kirkuk Journal of Science*, *12*(2), 108-120.
- [44] Rahimi, F., Bouzari, M., Maleki, Z., and Rahimi, F. (2009). Antibiotic susceptibility pattern among Staphylococcus spp. with emphasis on detection of mecA gene in methicillin resistant Staphylococcus aureus isolates. Iranian Journal of Clinical Infectious Diseases, 4(3):143-150.
- [45] Rasigade, J. P., Dunyach-Rémy, C., Sapin, A., Messad, N., Trouillet-Assant, S., Dupieux, C., and Laurent, F. (2016). A prophage in diabetic foot ulcer—colonizing Staphylococcus aureus impairs invasiveness by limiting intracellular growth. *The Journal of Infectious Diseases*, 214(10), 1605-1608.
- [46] Refaat, S. M., Mehdi, L. Y., and Al-Khazraji, S. M. (2022). Detection of mecA gene of Staphylococcus aureus isolated from diabetic wound infections. *Biochemical and Cellular Archives*, 22(1).
- [47] Romero, L. C., and de Souza, M. D. L. R. (2021). Insights into the epidemiology of community-associated methicillin-resistant Staphylococcus aureus in special populations and at the community-healthcare interface. *The Brazilian Journal of Infectious Diseases*, 25(6), 101636.
- [48] Sangappa, M. A. N. J. U. N. A. T. H., and Thiagarajan, P. A. D. M. A. (2012). Methicillin resistant Staphylococcus aureus: Resistance genes and their regulation. *International Journal of Pharmacy and Pharmaceutical Sciences*, *4*(1), 658-667.
- [49] Schaper, N. C. (2004). Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. *Diabetes/metabolism research and reviews*, 20(S1), S90-S95.
- [50] Shettigar, K., and Murali, T. S. (2020). Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. *European Journal of Clinical Microbiology and Infectious Diseases*, 39(12), 2235-2246.

- [51] Siddiqui, T., Khan, M. N., Fatima, S., Alam, N., Masood, R., Saeed, R., and Naqvi, T. (2018). Prevalence of mecA: Genotyping screening of community acquired-MRSA isolates in Karachi, Pakistan. *Pak. J. Pharm. Sci*, *31*(5), 2091-2094.
- [52] Singh, N., Armstrong, D. G., and Lipsky, B. A. (2005). Preventing foot ulcers in patients with diabetes. *Jama*, 293(2), 217-228.
- [53] Singh, S., and Apte, A. (2014). Comparative study of silver foam dressing over povidone iodone dressing in infected wounds. *Journal of Evolution of Medical and Dental Sciences*, 3(22), 6233-6243.
- [54] Steinig, E. J., Duchene, S., Robinson, D. A., Monecke, S., Yokoyama, M., Laabei, M., and Tong, S. Y. (2019). Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent. *MBio*, 10(6), 10-1128.
- [55] Wielders, C. L. C., Fluit, A. C., Brisse, S., Verhoef, J., and Schmitz, F. (2002). mecA gene is widely disseminated in Staphylococcus aureus population. *Journal of clinical microbiology*, 40(11), 3970-3975.
- [56] Yoong, P., and Torres, V. J. (2013). The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. *Current opinion in microbiology*, *16*(1), 63-69.
- [57] Zainulabdeen, S. M., and Dakl, A. A. A. (2021). Pathogenicity and virulence factors in Staphylococcus aureus. *MJPS*, 8(52113), 2.