Article Review: Physiological Role of Oxidative Stress in Abnormal Activity and Cell Death

Duaa R.M. Al-Safi 1*, Zahraa N.K. Al Aboudi 2

¹Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq

² Department of Biology, College of Education for Pure Sciences, University of Wasit, Wasit, Iraq Email: std2023304.dneama@uowasit.edu.iq ¹, zkhalaf@uowasit.edu.iq ²

Abstract

Oxidative stress is a fundamental concept in the field of cell biology and pathophysiology, which refers to presence an imbalance between the production of reactive oxygen species (ROS) and the ability of biological system to detoxify these reactive intermediates or to repair the resulting damage. This disturbance in the redox state of the cell can lead to generation of toxic effects through production of peroxides and free radicals, which subsequently damage essential cellular components such as nucleic acids, lipids, and proteins. Oxidative stress can arise from various sources, both endogenous and exogenous. Endogenously, ROS generated as a byproduct of normal cellular metabolism, particularly during oxidative phosphorylation in the mitochondria; whereas exogenous sources of oxidative stress include smoking, air pollution, exposure to ultraviolet or ionizing radiation, intense physical exercise, and psychological stress. When the production of ROS overwhelms the cell's antioxidant defenses, the resulting oxidative stress can have detrimental effects on cellular function and viability. Oxidative stress has been implicated in pathogenesis of numerous disease states due to disruption of normal signaling pathways that induce DNA damage and trigger apoptotic or necrotic cell death cascades. The deleterious effects of oxidative stress are not limited to acute events, but also contribute to development of chronic diseases. Furthermore, oxidative stress-induced DNA damage can lead to genomic instability and the activation of oncogenic signaling cascades. The physiological role of oxidative stress in cellular function is complex, as it can also serve as a signaling mechanism to maintain homeostasis. Moderate levels of reactive oxygen species can act as secondary messengers, triggering adaptive responses that enhance cellular antioxidant defenses and promote cell survival. However, when oxidative stress reaches a critical threshold, it can overwhelm these protective mechanisms and lead to abnormal cellular activities and, ultimately, cell death.

Keywords: Apoptosis, Cellular metabolism, DNA damage, Free radicals, Reactive oxygen species (ROS)

1. Background

1.1. Oxidative stress

Oxidative stress considers the resultant of increasing of intracellular concentrations of ROS that causes damaging for lipid, protein and DNAs (Yun et al., 2020). ROS is super anion,

http://annalsofrscb.ro

Received 30 July 2024; Accepted 15 August 2024

hydroxyl and hydrogen peroxide radicals among most negative effects (Demirci-Cekic et al., 2022). During development, most organisms are protected by the enzymatic and non-enzymatic antioxidants (Silva and Silva, 2023). Natural antioxidants are usually insufficient for preventing oxidative damage to organism. Antioxidant supplements that use slower oxidation or inhibit the oxidation of cell substrates have been shown to protect against damaging of hepatic cells or carcinogenesis (Gulcin, 2020; Akbari et al., 2022).

Oxidative damage from oxidative stress to biological molecules leads to abnormal activity and initiation of cell death. This is determined by an imbalance between the generation of free radicals, including active ROS, and activity of the antioxidants (Kıran et al., 2023; Sadiq, 2023). Intracellular ROS are produced by enzymes (mitotic enzymes, NADPH oxidase, xanthine oxidase, etc.) and non-enzymatic (UV) pathways and play many physiological functions within brain cells (Varol, 2020). Oxygen regeneration and toxicity depend on its electronic structure. In a stable rhythmic atmosphere, the two outer orbital electrons have the same spin (Napolitano et al., 2022).

Reducing forms of oxygen containing free radicals are very stable and require or need to accept electron donors (Martemucci et al., 2022). With this in mind, they are very active and have a very short lifespan. There is a slight decrease in oxygen radicals, superoxygen and hydroxyl radical, monomorphic oxygen, or ozone is not radical, but it can easily be converted to free radicals and can be called ROS (Chang and Xia, 2024). The high functional activity of ROS and the rapid interaction of chemical reactions with biological molecules are rapidly uptake by cells for signal transduction or control by a highly potent antioxidant system. Excessive production of ROS and/or a defect in the antioxidant system can lead to oxidation of protein, DNA or lipid peroxidation, which may significantly affect cell homeostasis (Juan et al., 2021; Pisoschi et al., 2021; Sadiq, 2023).

The incorrectly synthesized proteins are different for each neurodegenerative disease. The β -Amyloid, which forms extracellular brain plugs, as well as tangles of tau protein, is an important component of intracellular synapses, a histopathological feature of disease that associated with embedded in an intracellular portal called Roy's body of the brainstem, neocortical region, and spinal cord (Sharma et al., 2022; Gilbert et al., 2023). It should be noted that some synthesized proteins are not simply associated with a specific disease. Therefore, α -sinucrane accumulation (sinus disease) is also known as Roy's body dementia and multi-line atrophy (Gomez and Ibba, 2020; Rajab et al., 2020). Tau aggregates are not only Alzheimer's disease and result from a number of neurodegenerative disorders, but are manifested by major age-related disorder, progressive supranuclear palsy (PSP), and temporary chromosome-related dementia. The Alzheimer family is also associated with changes in beta-amyloid production (Virgilio et al., 2022; Darricau et al., 2023; Badihian et al., 2024).

To confirm the importance of proteins in neurodegenerative diseases, histopathological features of Huntington's disease is the synthesis of the Huntington protein. All of these neurotransmitters are composed primarily of protein fibers and are generally non-toxic, and toxic small forms of a few of these proteins cause cellular diseases and neurodegeneration in

these diseases (Höhn et al., 2020; Churkina et al., 2022). Uncoordinated proteins can be implanted and replicated in neurons and other astrocytes in prion-like mechanisms (Hu et al., 2024). Most of these proteins play a physiological role in the form of monomers. Therefore, Alpha-synuclein appears to be important in synaptic transmission and mitochondrial bioenergetics (Srinivasan et al., 2021).

Tau is a microtubule-associated protein that strengthens microtubules and promotes axon release (Jiménez, 2023). The conversion of these proteins into toxic forms requires fusion, and tau requires phosphorylation (Boyarko and Hook, 2021). This is a specific process that contains many components that can depend on the oxidative state of the cell; beta-amyloid or alpha-synocrin compounds can be composed of iron ions such as copper, iron and zinc (Nesci et al., 2021). Variable metals can produce ROS and, in view of this, negatively synthesized proteins require ROS for their synthesis, but also cause ROS to be produced (Alfei et al., 2024). One of the major problems associated with neurodegenerative diseases is early diagnostic biomarkers and, importantly, incorrectly synthesized protein testing as a potential biomarker for neurodegenerative diseases and the acquisition of oxidative stress products (Kulenkampff et al., 2021; Doroszkiewicz et al., 2022; Karaboğa and Sezgintürk, 2022). There are several roles for ROS and oxidation products in pathology, coagulation mechanism, and accumulation of abnormal binding proteins (Wang and Zennadi, 2020; Beura et al., 2022).

1.2. Free radicals

Free radicals are active chemicals with unpaired electrons in the outer layers. ROS are compounds that contain single oxygen (Tripathi et al., 2021). In addition, reactive nitrogen species (RNS) as ONOO-, radical peroxide (ROO-), nitrogen monoxide (NO), and copper, sulfur and iron species increase ROS in addition to disruption of redox balance (Kwon et al., 2021; Mandal et al., 2022). Additionally, a growing database of data indicates that production of active oxygen forms through mitochondria is essential for metabolic use, and these types destroying cell components with initiating death (Venditti and Di Meo, 2020; Tian et al., 2022; Al-Hetty et al., 2023). Studies showed that about 2-3% of these can escape the chronic antioxidant system and damage cells, lipids, proteins and nucleic acids (Zahra et al., 2021; Jomova et al., 2023). On the other hand, natural hazards can produce forms of ROS and other oxidizing chemicals such as air pollution, UV rays, and cigarette smoke (Zahaba, 2024).

1.3. Lipid peroxidation reaction

Lipid peroxidation is a common term for a process in which free radicals such as polyunsaturated fatty acids (PUFAs) and release hydrogen from carbon dioxide and oxygen to produce peroxyl fatty radicals and hydrogen peroxide (Angelova et al., 2021). According to scientific research on this topic, the main endemic sources of ROS, progenitor membranes, vesicles and peroxisomes have been investigated (Angelova et al., 2021). The whole process of lipid oxidation can be easily divided into three stages: initiation, distribution and termination (Wang et al., 2023). Peroxy radicals have the ability to release hydrogen from fat molecules in the presence of many metals, including iron and copper. The radicals eventually react with hydrogen to form lipid peroxides (Martemucci et al., 2022). Cytotoxic aldehyde is

Received 30 July 2024; Accepted 15 August 2024

formed when these radicals sometimes react with another lipid molecule, reacting with other FRs to form a stable end product of almond aldehyde (MDA). Another LPO product produced low-density lipoprotein (LDL) 4-hydroxynonenal (4hn) that can cause harmful cell damage (Misso et al., 2020; Podgrajsek et al., 2024).

1.4. Sources of Oxidative Stress

While the origins are quite different, oxidative stress can damage lipids, proteins, and DNA (Demirci-Cekic et al., 2022). In contrast, free radicals are required to every aerobic organism. Therefore, balance has importance to body healthy (Di Meo and Venditti, 2020). External or natural source of stresses have different chemicals ultimately lead for different disorders (Garcia-Caparros et al., 2021).

Other natural source of stresses includes pesticide and natural chemical that toxically affect by the modification of biomolecular peroxides and scavenging enzymes (Sule et al., 2022). In addition, the capability of active metal to produce ROS or nitrogen monoxide radical was studied (Liu et al., 2022). Internal stresses are manifested by inflammatory mechanisms and/or processes (Zhazykbayeva et al., 2020). In addition, several studies have demonstrated the role of cell culture in modulating oxidative stress mechanism (Varesi et al., 2022). In fact, metabolic processes can produce a variety of ROS level. It also causes a variety of damages, including double DNA fragmentation and mutations common in human cancer (Zhao et al., 2023). Non-enzymatic reaction of the mitochondrial respiratory chain on the enzymatic process of ROS production includes NADPH oxidase, nitrogen monoxide (eNOS), and lipophilic (Aranda-Rivera et al, 2022).

Natural production of ROS is complicated because reactive oxygen species can be beneficial in metabolism and detrimental to cells (Sies et al., 2022). It should be noted negative impacts of ROS and the role of antioxidant for moving from the region to other as a form of false yin yang (Tan et al., 2022). One beneficial role of oxidative stress is related to protection against infectious diseases and pathogens (Rudrapal et al., 2022). Immune cells, especially neutrophils, respond to a chain reaction in the exocrine cells, which leads to a process known as respiratory failure (Al-Shehri, 2021). In this process, macrophage or neutrophil for producing large ROS amounts. NADPH is a well-known as part of respiration (Mortimer et al., 2021). It showed that ROS can act as second transmitter of intracellular signaling mechanisms by acting as an anticancer agent causing cell aging and apoptosis (Pourbagher-Shahri et al., 2021). In contrast, lower H2O2 levels acting for signal the molecule to promote for cellular proliferating, segregation, or migrating. However, ROS biology reveals that cells are complex (Sadiq, 2023).

1.5. ROS species

The most effective species given that thiol-type RNS production is associated with ROS, scavenger tools and antioxidant reducing formation of RNS or lower nitrostric conditions. These radicals remove foreign substances within the cell for the benefit of the body (Pálla et al., 2024). Increasing evidence points to the importance roles or intracellular process like vasodilatation (Hu et al., 2022). On the other hand, excess levels of these free radicals can

have a detrimental effect on the biological structure, as discussed previously (Martemucci et al., 2022). Indeed, the target of RONS is highly sensitive to proteins, which are the main mechanism of cell proteins. However, ROS mediated thiol conversion, especially oxidative stress caused by cysteine residues (Aranda-Rivera et al., 2022).

Depending on the oxidative state of the cell, the thiol group of a cysteine residue is either reduced to a free thiol (-SH) by an antioxidant defense mechanism or converted to another post-translational oxidant (ox-PTM) (red) (Kükürt et al., 2021). Protein oxidation is well characterized in the neurodegenerative brain. For example, carbonyl proteins and 3-nitrotyrosine have been identified in Alzheimer's disease (AD) and Alzheimer's disease. Indeed, proteolytic pathways in the Alzheimer's brain include creatine kinase, glutamine synthase (GS), ubiquitin carboxy-terminal hydrolase L-1 (UCHL1), α -enolase, and dihydropyrimidinase-associated protein BB (CK). Craytin kinase (isoform), α -enolase and triphosphate isomerase are involved in the process of intracellular energy production, and low levels of ATP (adenosine triphosphate) deplete AD neurons in the brain (Hinarejos et al., 2021; Mi et al., 2024). Proteomic studies also showed that PD proteins (deficient in tryptophan and cysteine residues) synthesized α -sinucrane with methionine to form methionine sulfoxide in the cerebral parenchyma. Methionine oxidation has an effect in suppressing protein fibrosis. This may lead to the accumulation of α -sinucranone, which may affect the onset and progression of PD (Pu et al., 2023; Lopes et al., 2024).

1.6. Antioxidants

There are two types of antioxidants: enzymatic antioxidants and non-enzymatic antioxidants that control free radical reactions, and protect the body from ROS. Enzymatic antioxidants inhibit lipid peroxidation of the precursor membrane by acting as scavengers free radicals from intracellular and external sources (Sundaram Sanjay and Shukla, 2021). Non-enzymatic antioxidants are divided into intrinsic (metal antioxidants) and extrinsic (complementary antioxidants) (dietary antioxidants), (Ayoka et al., 2022). The body's immune system produces nutrients and non-enzymatic antioxidants like alpha-lipoic acid, melatonin, Larginine, coenzyme q10, uric acid, albumin, transferase, and birilbin (Teleanu et al., 2019). The body contains trace elements (selenium, manganese, and zinc), vitamins (A, E, and C), omega-3 and omega-36, fatty acids, and carotenoids form is produced. Low glutathione (GSH) is a non-enzymatic antioxidant produced mainly by intracellular fluid (Mirończuk-Chodakowska et al., 2018; Shakoor et al., 2021).

Antioxidants are chemical molecules that slow down autoxidation by preventing the formation or growth of free radicals (Parcheta et al., 2021). Free radicals are continuously produced by many biological or chemical processes and can occur simultaneously in nature (Nimse and Pal, 2015). There are many factors that contribute to the formation of free radicals. For example, smoking, drinking alcohol or certain foods, exposure to UV and ionizing radiation (for example, light), low-molecular ozone or other metals, annealing, iron depending on Fenton reaction, etc (Żukowski et al., 2018; Martemucci et al., 2022). It plays an important role in many physiological, biological and pathological conditions. In biological systems, they are generally defined as active molecules that contain oxygen, nitrogen, and

sulfur (Rani et al., 2021). As a result, they are associated with many different human diseases. Therefore, the formation of free radicals can be regulated in a variety of ways by antioxidants. Antioxidant efficacy is related to initiation potency, rate constants, redox volume, and dissolves antioxidants (Nauser and Gebicki, 2020).

In this case, plant foods that contain many antioxidants such as tocopherol, ascorbic acid, glutathione or natural antioxidants can prevent human diseases (Akbari et al., 2022). In addition, natural antioxidants have been shown to be effective supplements in cosmetics, diets and nutritional supplements (Hoang et al., 2021). Purbic acid and coumarin extracts are natural compounds. The first is orange pigment found in algae and fungi, and the second is found in a variety of plant sources, especially green plants (Islam et al., 2924). These compounds and their derivatives exhibit a wide variety of biological functions, including antibacterial, antiviral, antitumor, antifungal, cellular toxicity, as well as anti-inflammatory, anti-allergic, anticarcinogenic, hepatoprotective and antioxidant activities (Alibi et al., 2021; Tariq et al., 2021; Wahab et al., 2024). Ionizing radiation is used in medicine and industry, for example, for the diagnosis and treatment of cancer, as well as for cell nutrition. There are several ways medication can reduce the harmful effects of radiation exposure (Gharban and Al-Shaeli, 2021; Omer, 2021).

Among them, antioxidants can be used as radioprotectors that effectively removed by releasing free radicals or absorbing radiation (Shivappa and Bernhardt, 2022). The potency of antioxidants against free radicals can be tested in vivo or in vitro for abnormalities such as high costs, complications, and behavioral doubts (animal sacrifice), (Martemucci et al., 2022). Antioxidant can consider as chemically compounds that are categorized according to their mechanism of action (Gulcin, 2020). Basic antioxidant (scavengers) are chemically compounds that preventing oxidation, whereas secondary antioxidant (chain scavengers) are indirectly oxidized by splitting of hydroperoxide into nonradical compounds, the preparation a major antioxidant by donating hydrogen or electrons, neutral oxygen neutral, triple oxygen uptake, and UV rays by absorption (Gulcin, 2020; Pisoschi et al., 2021; Valgimigli, 2023). Vitamins E and A can be classified as a multi-functional antioxidant as it exhibits protective antioxidant activity in both its primary and secondary modes of action (de Almeida Torres et al., 2022; Chu et al., 2023).

1.7. Mechanism of Action of Antioxidants

Antioxidants play a direct role in reducing the types of ROS. Free radicals with oxygen and carbon centers in lipids are a common type of oxidizing agent (Ali et al., 2020). Initiation, distribution and termination are known as the three mechanisms involved in lipid. The antioxidants are working by blocking or breaking down the region (Costa et al., 2021). Antioxidants that break the chains inhibit this process by preventing the spread of large chains or destroying large chains (Chib et al., 2020).

1.8. Antioxidant enzyme

Potentially, ROS making the body at risk of oxidative stress. ROS production can be derived from mitochondria and various enzymes, including xanthine and NADPH oxidase and

chitochrome p450 (Fukai and Ushio-Fukai, 2020; Aranda-Rivera et al., 2022). These enzymes work specifically to produce specific undesirable effect for biological chemical activities. To overcome danger, testicles modified complex antioxidants (Gulcin, 2020). With respect to the enzymatic component of this immune system, the promotion of oxidative stress is characterized by the stimulation of NFB-mediated (Hojo et al., 2023). The basis of the biochemistry of these antioxidants is the rapid conversion of superoxide (O2) anions into hydrogen peroxide (H₂O₂) in the presence of SOD, which makes hydroxyl radicals more harmful. H₂O₂ itself is a powerful oxidant that penetrates the membranes and must be cleared to the cells immediately for preventing an accumulation of ROS, and removing H₂O₂ that influenced by catalase or glutathione peroxidase, which is present in the testicles (Carmo de Carvalho et al., 2022; Islam et al., 2022; Andrés et al., 2023). Glutathione (GST) causes binding in electrical activity by sulfhydryl groups on various substrates in preparation for cellular release (Parcheta et al., 2021). This function is important in removing lipid peroxides and the metabolism of heterologous organisms. SOD can enhance immunity and stem cells (Panahi et al., 2020; Nethravathy and Dakshayini, 2023). Significance of the SOD has been demonstrated in mice exposed to stresses in the testicles (Hamza and Diab, 2020). Therapy resulted in increasing cytochrome c leakage from mitochondria and DNA strand fractures in these viral cells compared to wild-type control (Gualtieri et al., 2021). Leakage of testicular mitochondria is further emphasized by much higher in testicles (Gualtieri et al., 2021; Kaltsas, 2023).

2. Conclusions

The study of oxidative stress has emerged as a critical area of inquiry within the biomedical sciences, offering profound insights into the intricate mechanisms underlying both physiological processes and the pathogenesis of a vast array of diseases. There is increasing evidence that the abnormal production of free radicals, such as the superoxide anion and hydroxyl radical, leads to increased stress on cellular structures and causes changes in molecular pathways that underpin the development of numerous important human diseases, including cardiovascular disorders, neurological conditions, and cancer, as well as the process of physiological aging. However, the field of study has seen a significant amount of progress and advancement in recent years, with a wealth of new research and discoveries that have expanded our understanding of the underlying principles and mechanisms at play. Hence, as the field continues to evolve and new issues are explored, there is a growing need for further studies and analyses to build upon these recent findings and address the remaining gaps in knowledge. One of the key areas that require additional investigation is the examination of the latest developments within the field, as highlighted by the observation that understanding the latest developments of a field not only can help researchers to explore ideas, attain new research ideas. Moreover, the need for such studies is further underscored by the assertion that furthermore studies based on recently published articles are needed. This sentiment is echoed in the literature, with one study emphasizing the importance of helping the reader link the present work with the larger body of knowledge that was portrayed in the Introduction" and highlighting the need to suggest further work that needs to be done based on the new knowledge gained from the research

References

- [1] Akbari, B., Baghaei-Yazdi, N., Bahmaie, M., and Mahdavi Abhari, F. (2022). The role of plant-derived natural antioxidants in reduction of oxidative stress. *BioFactors*, 48(3), 611-633.
- [2] Alfei, S., Schito, G.C., Schito, A.M., and Zuccari, G. (2024). Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. *International Journal of Molecular Sciences*, 25(13), 7182.
- [3] Al-Hetty, H.R.A.K., Jabbar, A.D., Eremin, V.F., Jabbar, A.M., Jalil, A.T., Al-Dulimi, A.G., and Saleh, M.M. (2023). The role of endoplasmic reticulum stress in endometriosis. *Cell Stress and Chaperones*, 28(2), 145-150.
- [4] Ali, S.S., Ahsan, H., Zia, M.K., Siddiqui, T., and Khan, F.H. (2020). Understanding oxidants and antioxidants: Classical team with new players. *Journal of food biochemistry*, 44(3), e13145.
- [5] Alibi, S., Crespo, D., and Navas, J. (2021). Plant-derivatives small molecules with antibacterial activity. *Antibiotics*, 10(3), 231.
- [6] Al-Shehri, S.S. (2021). Reactive oxygen and nitrogen species and innate immune response. *Biochimie*, 181, 52-64.
- [7] Andrés, C.M.C., Pérez de la Lastra, J.M., Andrés Juan, C., Plou, F.J., and Pérez-Lebeña, E. (2023). Superoxide anion chemistry—Its role at the core of the innate immunity. *International journal of molecular sciences*, 24(3), 1841.
- [8] Angelova, P.R., Esteras, N., and Abramov, A.Y. (2021). Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. *Medicinal Research Reviews*, 41(2), 770-784.
- [9] Aranda-Rivera, A.K., Cruz-Gregorio, A., Arancibia-Hernández, Y.L., Hernández-Cruz, E.Y., and Pedraza-Chaverri, J. (2022). RONS and oxidative stress: An overview of basic concepts. *Oxygen*, 2(4), 437-478.
- [10] Ayoka, T.O., Ezema, B.O., Eze, C.N., and Nnadi, C.O. (2022). Antioxidants for the Prevention and Treatment of Non-communicable Diseases. *Journal of Exploratory Research in Pharmacology*, 7(3), 179-189.
- [11] Badihian, N., Tosakulwong, N., Weigand, S.D., Ali, F., Clark, H.M., Stierwalt, J., and Josephs, K.A. (2024). Relationships between regional burden of tau pathology and age at death and disease duration in PSP. *Parkinsonism and Related Disorders*, 127, 107109.
- [12] Beura, S.K., Dhapola, R., Panigrahi, A.R., Yadav, P., Reddy, D.H., and Singh, S.K. (2022). Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. *Life Sciences*, 306, 120855.

- [13] Boyarko, B., and Hook, V. (2021). Human tau isoforms and proteolysis for production of toxic tau fragments in neurodegeneration. *Frontiers in neuroscience*, 15, 702788.
- [14] Carmo de Carvalho, M.D., Martins, da Silva Santos Oliveira, A.S., da Silva, L.A.A., Primo, M.G.S., and de Carvalho Lira, V.B. (2022). Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In *Biomarkers in Nutrition* (pp.1-25). Cham: Springer International Publishing.
- [15] Chang, L., and Xia, Y. (2024). Excavating the Potential of Photo-and Electroupcycling Platforms Toward a Sustainable Future for Waste Plastics. *Small Science*, 4(2), 2300096.
- [16] Chib, A., Gupta, N., Bhat, A., Anjum, N., and Yadav, G. (2020). Role of antioxidants in food. *Int. J. Chem. Stud*, 8, 2354-2361.
- [17] Chu, C.C., Chew, S.C., Liew, W.C., and Nyam, K.L. (2023). Review article vitamin E: a multi-functional ingredient for health enhancement and food preservation. *Journal of Food Measurement and Characterization*, *17*(6), 6144-6156.
- [18] Churkina, A.S., Shakhov, A.S., Kotlobay, A.A., and Alieva, I.B. (2022). Huntingtin and other neurodegeneration-associated proteins in the development of intracellular pathologies: potential target search for therapeutic intervention. *International Journal of Molecular Sciences*, 23(24), 15533.
- [19] Costa, M., Losada-Barreiro, S., Paiva-Martins, F., and Bravo-Diaz, C. (2021). Polyphenolic antioxidants in lipid emulsions: Partitioning effects and interfacial phenomena. *Foods*, 10(3), 539.
- [20] Darricau, M., Katsinelos, T., Raschella, F., Milekovic, T., Crochemore, L., Li, Q., and Planche, V. (2023). Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. *Brain*, 146(6), 2524-2534.
- [21] de Almeida Torres, R.J., dos Anjos Ferreira, A.L., Luchini, A., de Almeida Torres, R.J., and Correa, C.R. (2022). The role of non-enzymatic antioxidants on age-related macular degeneration. *Front. Drug Chem. Clin. Res*, 5, 1-19.
- [22] Demirci-Cekic, S., Özkan, G., Avan, A.N., Uzunboy, S., Çapanoğlu, E., and Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. *Journal of pharmaceutical and biomedical analysis*, 209, 114477.
- [23] Di Meo, S., and Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants. *Oxidative medicine and cellular longevity*, 2020(1), 9829176.
- [24] Doroszkiewicz, J., Groblewska, M., and Mroczko, B. (2022). Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. *International Journal of Molecular Sciences*, 23(9), 4610.

- [25] Fukai, T., and Ushio-Fukai, M. (2020). Cross-talk between NADPH oxidase and mitochondria: role in ROS signaling and angiogenesis. *Cells*, 9(8), 1849.
- [26] Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., and Lao, M.T. (2021). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. *The Botanical Review*, 87, 421-466.
- [27] Gharban, H.A., and Al-Shaeli, S.J. (2021). Clinical and serum biochemical evaluation of goats with hypomagnesemia. *Biochemical and Cellular Archives*, 21(1).
- [28] Gilbert, M.A., Fatima, N., Jenkins, J., O'Sullivan, T.J., Schertel, A., Halfon, Y., and Frank, R.A. (2023). In situ cryo-electron tomography of β-amyloid and tau in postmortem Alzheimer's disease brain. *bioRxiv*, 2023-07.
- [29] Gomez, M.A.R., and Ibba, M. (2020). Aminoacyl-tRNA synthetases. *Rna*, 26(8), 910-936.
- [30] Gualtieri, R., Kalthur, G., Barbato, V., Di Nardo, M., Adiga, S.K., and Talevi, R. (2021). Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. *Antioxidants*, 10(3), 337.
- [31] Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. *Archives of toxicology*, 94(3), 651-715.
- [32] Hamza, R.Z., and Diab, A.E.A.A. (2020). Testicular protective and antioxidant effects of selenium nanoparticles on Monosodium glutamate-induced testicular structure alterations in male mice. *Toxicology Reports*, 7, 254-260.
- [33] Hinarejos, I., Machuca, C., Sancho, P., and Espinós, C. (2020). Mitochondrial dysfunction, oxidative stress and neuroinflammation in neurodegeneration with brain iron accumulation (NBIA). *Antioxidants*, *9*(10), 1020.
- [34] Hoang, H.T., Moon, J.Y., and Lee, Y.C. (2021). Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. *Cosmetics*, 8(4), 106.
- [35] Höhn, A., Tramutola, A., and Cascella, R. (2020). Proteostasis failure in neurodegenerative diseases: focus on oxidative stress. *Oxidative medicine and cellular longevity*, 2020(1), 5497046.
- [36] Hojo, M., Maeno, A., Sakamoto, Y., Yamamoto, Y., Taquahashi, Y., Hirose, A., and Nakae, D. (2023). Time-course of transcriptomic change in the lungs of F344 rats repeatedly exposed to a multiwalled carbon nanotube in a 2-year test. *Nanomaterials*, 13(14), 2105.
- [37] Hu, C., Yan, Y., Jin, Y., Yang, J., Xi, Y., and Zhong, Z. (2024). Decoding the cellular trafficking of prion-like proteins in neurodegenerative diseases. *Neuroscience Bulletin*, 40(2), 241-254.

- [38] Hu, Y., Chen, M., Wang, M., and Li, X. (2022). Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. *Trends in Cardiovascular Medicine*, 32(2), 61-70.
- [39] Islam, M.N., Rauf, A., Fahad, F.I., Emran, T.B., Mitra, S., Olatunde, A., and Mubarak, M.S. (2022). Superoxide dismutase: an updated review on its health benefits and industrial applications. *Critical Reviews in Food Science and Nutrition*, 62(26), 7282-7300.
- [40] Islam, S.R., Alam, M.K., Alassod, A., Ahmed, T., Yousif, A.H., Rashid, M.M., and Mia, R. (2024). Natural dyes and pigments as a source of medicine. In *Renewable Dyes and Pigments* (pp.177-232). Elsevier.
- [41] Jiménez, J.S. (2023). Macromolecular structures and proteins interacting with the microtubule associated tau protein. *Neuroscience*, 518, 70-82.
- [42] Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., and Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. *Archives of toxicology*, 97(10), 2499-2574.
- [43] Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., and Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. *International journal of molecular sciences*, 22(9), 4642.
- [44] Kaltsas, A. (2023). Oxidative stress and male infertility: the protective role of antioxidants. *Medicina*, 59(10), 1769.
- [45] Karaboğa, M.N.S., and Sezgintürk, M.K. (2022). Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. *Journal of Pharmaceutical and Biomedical Analysis*, 209, 114479.
- [46] Kıran, T.R., Otlu, O., and Karabulut, A.B. (2023). Oxidative stress and antioxidants in health and disease. *Journal of Laboratory Medicine*, 47(1), 1-11.
- [47] Kükürt, A., Gelen, V., Başer, Ö.F., Deveci, H.A., and Karapehlivan, M. (2021). Thiols: Role in oxidative stress-related disorders. *Accenting Lipid Peroxidation.London: IntechOpen*, 27-47.
- [48] Kulenkampff, K., Wolf Perez, A.M., Sormanni, P., Habchi, J., and Vendruscolo, M. (2021). Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. *Nature Reviews Chemistry*, 5(4), 277-294.
- [49] Kwon, N., Kim, D., Swamy, K.M.K., and Yoon, J. (2021). Metal-coordinated fluorescent and luminescent probes for reactive oxygen species (ROS) and reactive nitrogen species (RNS). *Coordination Chemistry Reviews*, 427, 213581.
- [50] Liu, J., Shi, L., Wang, Y., Li, M., Zhou, C., Zhang, L., and Wang, Z. (2022). Ruthenium-based metal-organic framework with reactive oxygen and nitrogen species scavenging activities for alleviating inflammation diseases. *Nano Today*, 47, 101627.

- [51] Lopes, F.B.T.P., Schlatzer, D., Li, M., Yilmaz, S., Wang, R., Qi, X., and Chance, M.R. (2024). Methionine Sulfoxide Speciation in Mouse Hippocampus Revealed by Global Proteomics Exhibits Age-and Alzheimer's Disease-Dependent Changes Targeted to Mitochondrial and Glycolytic Pathways. *International Journal of Molecular Sciences*, 25(12), 6516.
- [52] Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., and Sarkar, A. (2022). Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants—maintenance of structural individuality and functional blend. *Advances in Redox Research*, 5, 100039.
- [53] Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., and D'Alessandro, A.G. (2022). Free radical properties, source and targets, antioxidant consumption and health. *Oxygen*, 2(2), 48-78.
- [54] Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., and D'Alessandro, A.G. (2022). Free radical properties, source and targets, antioxidant consumption and health. *Oxygen*, 2(2), 48-78.
- [55] Mi, Z., Ma, J., Zeh, D.J., Rose, M.E., Henchir, J.J., Liu, H., and Graham, S.H. (2024). Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. *Experimental Neurology*, 373, 114650.
- [56] Mirończuk-Chodakowska, I., Witkowska, A.M., and Zujko, M.E. (2018). Endogenous non-enzymatic antioxidants in the human body. *Advances in medical sciences*, 63(1), 68-78.
- [57] Misso, R.L.N.M., Biteghe, F.A.N., Obiang, C.S., Ondo, J.P., Gao, N., Cervantes-Cervantes, M., and Ndong, J.D.L.C. (2020). Effect of aqueous extracts of Ficus vogeliana Miq and Tieghemella africana Pierre in 7, 12-Dimethylbenz (a) anthracene-induced skin cancer in rats. *Journal of ethnopharmacology*, 263, 113244.
- [58] Mortimer, P.M., Mc Intyre, S.A., and Thomas, D.C. (2021). Beyond the extra respiration of phagocytosis: NADPH oxidase 2 in adaptive immunity and inflammation. *Frontiers in immunology*, 12, 733918.
- [59] Napolitano, G., Fasciolo, G., and Venditti, P. (2022). The ambiguous aspects of oxygen. Oxygen, 2(3), 382-409.
- [60] Nauser, T., and Gebicki, J.M. (2020). Antioxidants and radical damage in a hydrophilic environment: chemical reactions and concepts. *Essays in biochemistry*, 64(1), 67-74.
- [61] Nesci, S., Trombetti, F., Pagliarani, A., Ventrella, V., Algieri, C., Tioli, G., and Lenaz, G. (2021). Molecular and supramolecular structure of the mitochondrial oxidative phosphorylation system: implications for pathology. *Life*, 11(3), 242.

- [62] Nethravathy, V., and Dakshayini, M. (2023). Potential Antioxidant Enzymes from Fungi and Their Clinical Significance. In *Fungal Resources for Sustainable Economy: Current Status and Future Perspectives* (pp.147-177). Singapore: Springer Nature Singapore.
- [63] Nimse, S.B., and Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. *RSC advances*, 5(35), 27986-28006.
- [64] Omer, H. (2021). Radiobiological effects and medical applications of non-ionizing radiation. *Saudi journal of biological sciences*, 28(10), 5585-5592.
- [65] Pálla, T., Noszál, B., and Mirzahosseini, A. (2024). Prediction of Antioxidant Capacity of Thiolate–Disulfide Systems Using Species-Specific Basicity Values. *Antioxidants*, 13(9), No-1053.
- [66] Panahi, M., Rahimi, B., Rahimi, G., Yew Low, T., Saraygord-Afshari, N., and Alizadeh, E. (2020). Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. *Journal of cellular physiology*, 235(10), 6462-6495.
- [67] Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., and Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. *Materials*, 14(8), 1984.
- [68] Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., and Serban, A.I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. *European Journal of Medicinal Chemistry*, 209, 112891.
- [69] Podgrajsek, R., Ban Frangez, H., and Stimpfel, M. (2024). Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. *International Journal of Molecular Sciences*, 25(7), 3613.
- [70] Pourbagher-Shahri, A.M., Farkhondeh, T., Talebi, M., Kopustinskiene, D.M., Samarghandian, S., and Bernatoniene, J. (2021). An overview of NO signaling pathways in aging. *Molecules*, 26(15), 4533.
- [71] Pu, S., Zhang, J., Ren, C., Zhou, H., Wang, Y., Wu, Y., and Zhou, H. (2023). Montelukast prevents mice against carbon tetrachloride-and methionine-choline deficient diet-induced liver fibrosis: Reducing hepatic stellate cell activation and inflammation. *Life Sciences*, 325, 121772.
- [72] Rajab, I.M., Hart, P.C., and Potempa, L.A. (2020). How C-reactive protein structural isoforms with distinctive bioactivities affect disease progression. *Frontiers in immunology*, 11, 2126.
- [73] Rani, A., Saini, K.C., Bast, F., Mehariya, S., Bhatia, S.K., Lavecchia, R., and Zuorro, A. (2021). Microorganisms: a potential source of bioactive molecules for antioxidant applications. *Molecules*, 26(4), 1142.
- [74] Rudrapal, M., Khairnar, S.J., Khan, J., Dukhyil, A.B., Ansari, M.A., Alomary, M.N., and Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced

- human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. *Frontiers in pharmacology*, 13, 806470.
- [75] Sadiq, I.Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. *Current Molecular Medicine*, 23(1), 13-35.
- [76] Shakoor, H., Feehan, J., Al Dhaheri, A.S., Ali, H.I., Platat, C., Ismail, L.C., and Stojanovska, L. (2021). Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. *Maturitas*, 143, 1-9.
- [77] Sharma, L., Sharma, A., Kumar, D., Asthana, M.K., Lalhlenmawia, H., Kumar, A., and Kumar, D. (2022). Promising protein biomarkers in the early diagnosis of Alzheimer's disease. *Metabolic Brain Disease*, 37(6), 1727-1744.
- [78] Shivappa, P., and Bernhardt, G.V. (2022). Natural radioprotectors on current and future perspectives: A mini-review. *Journal of Pharmacy and Bioallied Sciences*, 14(2), 57-71.
- [79] Sies, H., Belousov, V.V., Chandel, N.S., Davies, M.J., Jones, D.P., Mann, G.E., and Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. *Nature reviews Molecular cell biology*, 23(7), 499-515.
- [80] Silva, B.R., and Silva, J.R. (2023). Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. *Animal reproduction science*, 249, 107186.
- [81] Srinivasan, E., Chandrasekhar, G., Chandrasekar, P., Anbarasu, K., Vickram, A.S., Karunakaran, R., and Srikumar, P.S. (2021). Alpha-synuclein aggregation in Parkinson's disease. *Frontiers in medicine*, 8, 736978.
- [82] Sule, R.O., Condon, L., and Gomes, A.V. (2022). A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. *Oxidative medicine and cellular longevity*, 2022(1), 5563759.
- [83] Sundaram Sanjay, S., and Shukla, A.K. (2021). Free radicals versus antioxidants.In *Potential Therapeutic Applications of Nano-antioxidants* (pp.1-17). Singapore: Springer Singapore.
- [84] Tan, Y., Cheong, M.S., and Cheang, W.S. (2022). Roles of reactive oxygen species in vascular complications of diabetes: Therapeutic properties of medicinal plants and food. *Oxygen*, 2(3), 246-268.
- [85] Tariq, L., Bhat, B.A., Hamdani, S.S., and Mir, R.A. (2021). Phytochemistry, pharmacology and toxicity of medicinal plants. *Medicinal and Aromatic Plants: Healthcare and Industrial Applications*, 217-240.
- [86] Teleanu, R.I., Chircov, C., Grumezescu, A.M., Volceanov, A., and Teleanu, D.M. (2019). Antioxidant therapies for neuroprotection—A review. *Journal of clinical medicine*, 8(10), 1659.

- [87] Tian, C., Liu, Y., Li, Z., Zhu, P., and Zhao, M. (2022). Mitochondria related cell death modalities and disease. *Frontiers in Cell and Developmental Biology*, 10, 832356.
- [88] Tripathi, R., Gupta, R., Sahu, M., Srivastava, D., Das, A., Ambasta, R.K., and Kumar, P. (2021). Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. *Environmental Science and Pollution Research*, 1-48.
- [89] Valgimigli, L. (2023). Lipid peroxidation and antioxidant protection. *Biomolecules*, 13(9), 1291.
- [90] Varesi, A., Chirumbolo, S., Campagnoli, L.I.M., Pierella, E., Piccini, G.B., Carrara, A., and Pascale, A. (2022). The role of antioxidants in the interplay between oxidative stress and senescence. *Antioxidants*, 11(7), 1224.
- [91] Varol, M. (2020). ROS and oxidative stress in cancer: recent advances. *Drug targets in cellular processes of cancer: from nonclinical to preclinical models*, 109-138.
- [92] Venditti, P., and Di Meo, S. (2020). The role of reactive oxygen species in the life cycle of the mitochondrion. *International journal of molecular sciences*, 21(6), 2173.
- [93] Virgilio, E., De Marchi, F., Contaldi, E., Dianzani, U., Cantello, R., Mazzini, L., and Comi, C. (2022). The role of Tau beyond Alzheimer's disease: a narrative review. *Biomedicines*, 10(4), 760.
- [94] Wahab, B.A.A., Merah, M.H., Latif, A.D., and Gharban, H.A. (2024). Alternative therapeutic approach of ovine subclinical mastitis using the ethanolic roots extract of Capparis spinosa. *Open Veterinary Journal*, 14(3), 814.
- [95] Wang, D., Xiao, H., Lyu, X., Chen, H., and Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. *Oil Crop Science*, 8(1), 35-44.
- [96] Wang, Q., and Zennadi, R. (2020). Oxidative stress and thrombosis during aging: the roles of oxidative stress in RBCs in venous thrombosis. *International journal of molecular sciences*, 21(12), 4259.
- [97] Yun, H.R., Jo, Y.H., Kim, J., Shin, Y., Kim, S.S., and Choi, T.G. (2020). Roles of autophagy in oxidative stress. *International journal of molecular sciences*, 21(9), 3289.
- [98] Zahaba, M. (2024). Occupational hazards and oxidative stress.In *Fundamental Principles of Oxidative Stress in Metabolism and Reproduction* (pp.61-75). Academic Press.
- [99] Zahra, K.F., Lefter, R., Ali, A., Abdellah, E.C., Trus, C., Ciobica, A., and Timofte, D. (2021). The involvement of the oxidative stress status in cancer pathology: a double view on the role of the antioxidants. *Oxidative Medicine and Cellular Longevity*, 2021(1), 9965916.

- [100] Zhao, Y., Ye, X., Xiong, Z., Ihsan, A., Ares, I., Martínez, M., and Martínez, M.A. (2023). Cancer metabolism: the role of ROS in DNA damage and induction of apoptosis in cancer cells. *Metabolites*, 13(7), 796.
- [101] Zhazykbayeva, S., Pabel, S., Mügge, A., Sossalla, S., and Hamdani, N. (2020). The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. *Biophysical reviews*, 12(4), 947-968.
- [102] Żukowski, P., Maciejczyk, M., and Waszkiel, D. (2018). Sources of free radicals and oxidative stress in the oral cavity. *Archives of Oral Biology*, 92, 8-17.