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Abstract

In this paper we study spaces of Bessel potentials in n-dimensional Euclidean spaces. They
are constructed on the basis of a rearrangement-invariant space (RIS) by using convolutions with
Bessel- MacDonald kernels. The differential properties of potentials are characterized by their
modulus of continuity of order k in the uniform norm. Specifically, the treatment covers spaces of
Generalized Bessel potentials constructed over the basic weighted Lorentz space. In particular, we
determine continuity envelope function. This result is then applied to estimate the approximation
numbers of Generalized Bessel potentials when Generalized Bessel potentials constructed over the
basic weighted Lorentz space.
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Introduction

We study the space of Bessel potentialsHS (R™) constructed by convolutions of functions with
Bessel-MacDonald’s kernels . Here the role of the basic space is played by a rearrangement-invariant
space (RIS). The paper is organized as follows. Section 1- basic definitions of the potential theory.
The main properties of kernels are considered and basic spaces for potentials are described. Section
2-contians some auxiliary results. Estimates for ||u||-are presented for potentials, and properties of
moduli of continuity are discussed,determine continuity envelope function. The main results of the
paper are presented in Section 3. In the Theorem 3.1 we determine continuity envelope function. This
result is then applied to estimate the approximation numbers of Generalized Bessel potentials when
Generalized Bessel potentials constructed over the basic weighted Lorentz space.

|.Basic definitions

The potential space H§ = HS(R™) isdefined as the set of convolutions of potentials kernel with
functions from the basic space.
HS(R") ={u = G*f:f € E(R)}.(1)
where E(R") is a rearrangement-invariant space (shortly: RIS). This uses the axiomatics introduced
by C. Bennett and R. Sharpley [1]. We define
||u||Hg = inff)|f|lz : f € E(R"),G xf = u}. (2)
The kernel of a representation G is called admissible if
G e L;(R") + E (R").
Here the convolution G = fis defined as the integral

G+ D) = 2m 727 i, Gx—yf(y)dy.3)
Moreover, let E'(R)be the associated RIS, i.e. RIS with the norm:
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lglle: = sup f faldy < f € B [ifllg <1¢. @)
Rn

For the RIS E(R"),E'(R™), we consider the spaces E = E(R, ), E = E'(R, ) —their Luxemburg
representations, i.e. RIS for which the following equalities are satisfied
Iflle = 11"l , lglle = lg*llz-
where f*is the decreasing rearrangement of the functionf, i.e. a nonnegative decreasing right
continuous function on R, = (0, o), which is equi-measurable with f:

by XER" : [f(X)]| >y} = {te R:IFF M| >y}, yeR,. (5
wherep,, is n—dimensional Lebesgue measure.
The space of potentials HY = HS(R")isdefined as the set of convolutions of the kernels of
potentials with functions from the basic space E.
For Re (0,c0)we introduce the class of monotone functions J,(R) as follows. the
function®: (0,R) = R, € J,(R) belongs to J,, (R), if dsatisfies the following conditions:
1. decreasing and continuous at(0, R),
2. there is a constant c € R, such that

r

]CID(p)p“‘1 dp < c®(r", r € (0,R). (6)
0

The kernel of a representation G € L;(R"), the properties of kernel are discussed in Definitions 1.1-
1.3 below
Definition 1.1. Let Let® € 3, (R). We assume that G € Sg(®), if
Gx) =d(|x]), 0<p=|x|] <R, RER,.
Definition 1.2. Let ® € 3, (R). We assume that G € Sg(®; X), where X(R™) is an RIS, if
G(x) = GR(¥) + GR() ;
Br ={x € R": |x| <R}LRER,.
GR() = G(OxB, (%) 5 Gr(¥) = GX)xpg (),
G(x) = ®(Jx]), at|x| <R, Gi(x) € X(R™).
Definition 1.3. The potentials u € HE (R™) are called generalized Bessel potentials, if
® e 3,(R), whereR € R,.

GESR(P;L; NE), Jon Gdx # 0.
Remark 1.4. IfG* € E (0,T)andu = G*f: f€ E(R") thenu € C(R").
Definition 1.5. Modulus of continuity for u € C(R")in the uniform norm is defined as:
w¢(u; ) = sup {”A'ﬁu”c : |h| < ‘E}, TeR,. (7)
Definition 1.6. [4]For a (quasi-) normed function space X on R" with X — C, its continuity envelope
function &% (t) : (0,0) — [0, 0] is defined by

c(ft)
E)é,k (t) = sup ||f||,<51mct—k ,t > 0. (8)

Definition 1.7. [4]We can also define the majorant function
ex(D:= t'§ () = sup ¢y, 0E(f51), t = 0, (9)
eXis a non-negative, monotonically increasing function. Moreover, one can also consider some

envelope function adapted to higher-order smoothness moduli,

S0
E)é,k(t) = Ssup "fllxslwct—k = tkeﬁ(t), t = 0; k € N.
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In particular we denote & | = & .

we want to focus on the relation between continuity envelopes and approximation numbers of
compact embeddings. We briefly recall this concept.

Definition 1.8.[4] Let A1 and A2be two complex (quasi-) Banach spaces and let

T € L(A1,A2) be alinear and continuous operator from A1 into A2. The k-th approximation number
of T is given by

an(T) =inf{IT — SlI: S € L(A1,A2),rankS < m.(10)

Now let @ < R"be some bounded domain, X some function space onR" ,and X(Q) be defined by
restriction. Assume that X & C(Q). It was proved in [8] that there exists ¢ > 0 such that for all
m e N,

ams1 (id: X(@) © C@) < em gl (m),

Definition 1.9. The Lorentz spacesA4(v), where v> 0, is measurable function, is the space of
measurable functions with finite (quasi) norms:

(J, £ 9v(Hdoe 1<q<o

Ifll 0 vy = .
ess Sup; ) ' (OV(D} ; q= oo.

Il. Auxiliary theorems
Theorem 2.1[7] Let G € L;(R"),G # 0,¢(7) = G*(1),7 € R4, and function f: R® — R, is such
that with some Te R,.
T *
Jo 2@ (D)dr < 0,
1. For convolutionu(x) = [, G(x —y)f(¥)dy, x € R%,
the following estimate holdssup, egn |1 (x)|cg fOT ¢ f* (v)dr,

0 T -1
co=1+ < ¢(1) dr) ¢(r)dr
Jeou)(]

2. Let moreG € G*(R™\{0}), k € N,and forGy, (x) = Xa|=k|D*G(x)| , x € R",
with ¢; € R, estimate takes place

G (O] < 1 (Ix]), x € R, (%)

where
1

0 <Y, (1) =¥, <(é);> lon R,

and correlations holdy, (t) < t=*\"¢(1),7 € (0, T, [ i (r) dt < ».

Then the convolution, is continuous onR, and for t € (0, T]
T

1
a)g(u; tF)Sczf

0

K

T n
K K

d(@f (Mdr. (%)

Tn+tn
Here ¢, = ¢,¢d ,, where

d=1+—" fw()d
B Tz/)K(T)T‘/’” B

¢ —constant of condition (x), ¢ =Z¢(k,n) € R,.
Under the condition ¢(7) € E ( (0, T) inequality (3.1) performed for any function f € E(R"), that
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is Theorem 3.1 is applicable for any potential u €Hg(R"), since the formulau(x) = fRn G(x —
Nf)dy, x €R", istrue forit.

Lemma 2.1.[7] Let the following condition be satisfied: [ TR ()dT < By tUw(t) ot € (0,T],
where By € R, independent of t. In addition, let the conditions of Theorem 2.1 be fulfilled. Then

1
wk (u; tﬁ) <cy fotgb(r)f*(r)dr ,t € (0,T], where c; = (1 + Bg)cy, ¢, - constant from (xx) .

Theorem 2.2. [3] Let E = AP(v) be the Lorentz space. Here weassume that the following condition
is satisfied
[ Trg(0dt< Byt p(0), te (0,T],

where B, € R.,is independent of t. Is satisfied. So, if ¢ = G* € E ((0,T) and
u = G=f:f € AP(v) there are the following:

1) u € C(R").

2)Let0 < p < 1,then

1 1
£ (us ) < csio (1)
welu; tn ) <cgwyltn)||u , 12
: 5 (6) lullyg, . (12)

1 ¢ T
where W, (ti) = SUPre(o,) Mg :
(S v®anP
3)Letl < p < oo, then
1
of (u; ) < csAOlullyg, . (13)
where
1
-11P , -p71p
Ao~ | B ode) (Fode)? | 2@ zdpzd?pp
k(t) ~ fo (fo(p T) (f()U T) fcvd‘t +(f0(p T) (IOU T) !
0
where p = ppTl :

I11. Formulation of the results

Theorem 3.1.Let E = AP(v) be the Lorentz space. Here we preserve the above notations and assume
that the conditions of Theorem 2.2are satisfied. So, there are the following estimates.
Let0 < p < 1,then

1
W0<t5> - 1 f( ¢ (Ddt
E)é,k(t) < 2C0 Ly where Wy (tn) = SUPze(o,0) —1_0 T (-
(JS v(Ddt)P?
Letl < p < OO,thenE)é,k(t) <2¢ A‘;/(t),
T 1
8 ~ | ](F o) (foar) | 295 4 (g ar) (fFuar)? |
kK= 1o (o @ 0 Fodr 0o ® 0 ’
c_ P
where p = —l
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Proof:
Let0 < p < 1, frominequality (12) we can write

Ny 1 1
A% (u; tn) Wo (tn)

k =C3 k ”u”Hg
- - - tn tn
Then we put in inequality (8)
1 1
HG /1 wg (u; tE) W (tH)
E ) —

Sk (t) = SUPjuig, F S G

E= tn tn

Moreover, we put here formula (9), and obtain

G 1 k 1
ef? (tn):= (D) < c3iy (1),
Let1 < p < oo, from inequality (13) we can write

1
wE(u;tH> A(D)
K S C—x

u
lullyg, .

tn tn
Then we put in inequality (8)
wg u;t%

i |
t") = SUp jy F o =GCs
C’k Hgﬁl tn tn

Moreover, we put here formula (9), and obtain
G

e " (t%) = gk (t%) < csAL (D),

Ay (t)
K

1. Conclusions

Let E = AP(v) be the Lorentz space. Here we preserve the above notations and assume that
the conditions of Theorem 3.1 are satisfied. So, there are the following.

Let Q c R"be some bounded domain, HS(Q) Dbe defined by restriction.
We have HE(Q) & C(Q). We proved in that there exists ¢ > 0 such that forallm € N,

if0 < p < 1,then ay 4 (id : HE(Q) & C(Q)) < cm_%E)é’k (m_%) < c3 CW, (m_%);
ift1 < p < oo, thena,, 4 (id: HE(Q) © C(Q)) < em ™, (m‘i) < ccsAy (m-ﬁ) ,
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