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Abstract 

Dengue is a mosquito-borne viral infection found in urban and semi-urban areas of the tropical and 

subtropical regions around the world causes millions of death in every year. Dengue has no proper 

vaccination; vector control remains the only available strategy to prevent the disease. A mathematical 

model has been formulated to investigate the control strategies of the disease. The qualitative analysis 

of the model includes the calculation of basic reproduction number using the next generation operator 

approach. The method of estimation of the effective reproduction number R(t) for actual epidemic has 

been explored. The local stability analysis of the disease free and endemic equilibrium points has been 

studied. It is found that the disease free equilibrium point is stable for R0 < 1, otherwise it is unstable. 

The endemic equilibrium point exists for R0 > 1. The figure of the basic reproduction number versus 

control parameters in aquatic and adult phase suggests that if the controls increase basic reproduction 

number (R0) becomes less than one consequently the disease die out from the system. In this context, 

the control in aquatic phase is more effective than adult phase. 

 

 Keywords: S-I-R model, basic reproduction number, effective reproduction number, equilibrium, 

stability. 

  

1. Introduction 

Mosquito transmitted diseases are the major problem of public health in the urban and 

semi-urban area of tropical and subtropical regions around the world, causing millions of death 

in every year and create a large economic burden [1]. Dengue is one of such mosquito 

transmitted disease. According to the record of Chinese medical encyclopedia of the Jin 

Dynasty, we can say that people have known about this disease since 265-420 AD.  They think 

that it is a "Water Poison" associated with flying insects. However the disease dengue was 

identified and named in 1779. In 1780 dengue epidemic spread to Asia, Africa and North 

America almost simultaneously. In 1789, Benjamin Rush coined the term "break-bone fever" 

based on the symptoms of the disease. 

The frequency of dengue has developed drastically around the globe in late two decades. Due 

to various causes the genuine number of dengue cases was underreported. One recent estimate 

demonstrates 390 million (284-528 million) people are infected by dengue in every year of 

which 96 million (67-136 million) manifest clinically [2]. Another investigation, of the 

prevalence of dengue, estimates that 3.9 billion individuals, in 128 nations, are in danger of 

infection with dengue [2]. The number of dengue cases revealed has expanded from 2.2 million 

in 2010 to 3.2 million in 2015. Before 1970, just 9 nations had encountered serious dengue 

infection. The sickness is currently endemic in more than 100 nations in the WHO region of 

Africa, Americas, Eastern Mediterranean, South-East Asia, and the Western Pacific. However 
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the most seriously affected regions are the America, South-East Asia and Western Pacific 

countries. In India the picture will be clear from the following data. 

 

Table 1: Statistics of dengue infection in India [3]: 

Year Number of Cases Reported Number of Deaths 

Reported 

2009 15535 96 

2010 28292 110 

2011 18860 169 

2012 50222 242 

2013 75808 193 

2014 40571 137 

2015 99913 220 

2016 129166 245 

2017 188401 325 

2018 101192 172 

2019 157315 166 

 

The possible factors for spreading the dengue fever are (i) Unplanned urbanization results in 

inadequate waste management, drainage system and public health systems (ii) Poor vector 

control (iii) Ignorance and indifference of the people and government (iii) Climate change and 

viral evolution. Although initial epidemics were situated in urban zones, expanded dengue 

spread has included suburban and rural locales in Asia and Latin America. Dengue virus is 

transmitted to human through the bite of infected female mosquitoes mainly Aedes aegypti and 

to a lesser extent, Aedes albopictus. The Aedes aegypti mosquito lives in urban areas and 

breeds generally in man-made water containers like tubs, tyre, cistern etc. Once a mosquito is 

infected with dengue, it remains infectious throughout its life and transmits dengue virus to the 

human body during blood feed. People of any age could be infected by dengue and symptoms 

appear within 3-14 days after infected mosquito bite [2]. DEN-1, DEN-2, DEN-3 and DEN-4 

are the four distinct, but closely related, serotypes of the virus dengue [2]. A person recovers 

from one of the dengue serotype having lifelong immune to that serotype but prone to infection 

from other three serotypes. About 12 weeks time the person becomes more susceptible to 

develop dengue hemorrhagic fever or dengue shock syndrome [4].  

There is a common saying that prevention is better than cure; this is more applicable when we 

know that there is no world-wide recommended vaccine for dengue. The prevention and 

control of dengue is based on the control strategies of mosquito which are divided into three 

categories physical control, biological control and chemical control. The physical controls 

includes the following GIS mapping of dengue area, focused and effective surveillance, 

determination of oviposition sites, community-based control programs and education of 

prevention strategies. The biological controls are Paratransgenesis and use of Wolbachia, 

genetic modification of vector species, use of sterile insect technique, use of larvivorous fish 

and crustacean. The chemical control includes the use of insecticides and plant derivatives, use 

of insect growth regulators, use of pheromone as an attract-and-kill approach. Besides the 
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above control strategies there are some other types of control efforts like development of 

immunotherapy and vaccines, development of dengue human infection model etc.  

In order to understand and control mosquito borne disease a number of mathematical model 

can be found in the literature [5, 6, 7, 8]. In this article, I consider an integer order system of 

ODE for investigation of control strategies. I use a mathematical model to analyze the dengue 

outbreak. My focus is on the calculations of the basic reproduction number R0 of actual 

epidemics as well as on the calculation of effective reproduction number R(t), since the basic 

reproduction number may change during the epidemic. The local stability of the system is also 

analyzed. My aim is to estimate the role of vector control in the reduction of the intensity and 

duration of epidemics.  

The work is organized as follows. In section-2, I formulate the model. In section-3, I have 

determined the disease-free equilibrium and calculate the expression for R0 for the epidemic. In 

this section, I also calculate the expression for effective reproduction number R(t) and estimate 

R0 for actual epidemic. In section-4, the local stabilities for both the disease-free and endemic 

steady state have been discussed. In section-5, I calculate the numerical values of the 

equilibrium points, characteristic roots of the respective equilibrium points and basic 

reproduction number using the force of infection. Finally, in section-6 I have drawn valuable 

conclusions. 

 2. Model Formation 

I assume uniform mixing between the human and the mosquito population, i.e., each mosquito 

bite has equal probability of transmitting the disease to susceptible human (or become infected 

by biting an infected human). Here the total mosquito population M is divided into three 

mutually exclusive sub-populations; namely aquatic (Ma), susceptible (Ms) and infectious (Mi). 

The parameters are the intrinsic oviposition rate 𝛿, the per capita mortality rate of adult female 

𝜇𝑚 and the per capita mortality rate of mosquitoes in aquatic forms 𝜇𝑎. The per capita rate at 

which mosquitoes emerge from the aquatic phase and become female adults is a. The 

remaining parameters are the carrying capacity C, the control efforts, modeled by additional 

mortality rates applied to the aquatic and terrestrial phase respectively ca and cm. The human 

population, H is assumed to be constant with per capita mortality rate given by 𝜇ℎ and it is 

divided into three sub-populations such as susceptible (Hs), infective (Hi), recovered 

individuals (Hr). The per capita biting rate of mosquito b is the average number of bites per 

mosquito per day, while the transmission probability is the probability that an infection bite 

produced a new case in a susceptible numbers of other spices. The transmission probabilities 

from the infected mosquito to the susceptible human and the infected human to the susceptible 

mosquito are denoted by 𝛽ℎ and 𝛽𝑚 respectively. Assuming that bMH is the average number 

of bites that a human received. Therefore, two infection rates, one is arising from the infected 

mosquito to the susceptible human, and the other one is arising from the infected human to the 

susceptible mosquito are defined as, 𝛽ℎMi Hs and 𝛽𝑚HiMs. 𝛼ℎ is the per capita human recovery 

rate. I have assumed that once a mosquito is infected with dengue remain infectious during 

their entire life. On the basis of the above assumption, we can formulate the following model. 

 
𝑑𝑀𝑎

𝑑𝑡
= 𝐾𝛿𝑀𝑎 (1 −

𝑀𝑎

𝐶
) − (𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎)𝑀𝑎 
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𝑑𝑀𝑠

𝑑𝑡
= 𝛾𝑚𝑀𝑎 − 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑠 

𝑑𝑀𝑖

𝑑𝑡
= 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑖                                            

𝑑𝐻𝑠

𝑑𝑡
= 𝜇ℎ(𝐻𝑟 − 𝐻𝑖) − 

𝑏𝛽ℎ𝑀 𝑖𝐻𝑠

𝐻
                                                 …………………… (1) 

𝑑𝐻𝑖

𝑑𝑡
=  

𝑏𝛽ℎ𝑀𝑖𝐻𝑠

𝐻
− (𝜇ℎ + 𝛼ℎ)𝐻𝑖 

𝑑𝐻𝑟

𝑑𝑡
= 𝛼ℎ𝐻𝑖 − 𝜇ℎ𝐻𝑟 

 

All of the parameters are constant and positive. Moreover, most of the parameter values 

considered here has been estimated at [5, 8]. In particular, higher temperatures increase the 

mosquito's survival and oviposition rate and accelerate its reaching to the adult phase [9]. I 

adopted a linear interpolation to evaluate mosquito parameters. In short, the parameter range is 

summarized in Table 2.  

 

Table 2: Parameters used in model (1), biological description and range of values 

Parameter 

symbol 

Biological meaning Estimated range 

K Sex ratio of mosquito 0-1 

𝛿 Average oviposition rate of mosquito 0-11.2 𝑑𝑎𝑦−1 

𝜇𝑚 Average mortality rate of adult mosquito 0.02-0.09 𝑑𝑎𝑦−1 

𝜇𝑎 Average mortality rate of mosquito in aquatic 0.01-0.47 𝑑𝑎𝑦−1 

𝛾𝑚 Average transmission rate from aquatic to terrestrial 0-0.19 𝑑𝑎𝑦−1 

𝜇ℎ Death rate of human  0.0143-0.0167 

𝑦𝑒𝑎𝑟−1 

𝛼ℎ Human recovery rate 0.083-0.25 𝑑𝑎𝑦−1 

C Carrying capacity of mosquito in aquatic phase 200000000 

𝑏 Average bit per mosquito 0-1 𝑑𝑎𝑦−1 

𝛽𝑚 Transmission probability from human to mosquito 0-1 

𝛽ℎ Transmission probability from mosquito to human 0-1 

𝑐𝑎 Control effort rates in aquatic phase 0-1 𝑑𝑎𝑦−1 
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𝑐𝑚 Control effort rates in terrestrial phase 0-1 𝑑𝑎𝑦−1 

 

3. Basic Reproduction Number 

Mathematical measurement of epidemics is done by calculating basic reproduction number 

[10, 11] R0 which is the average number of secondary infections produced when one infected 

individual is introduced into a host virgin population. Now a system affecting some disease 

fails into epidemic when R0 > 1. R0 is undoubtedly the most important threshold value to 

determine the nature of an epidemic. It carries the information about the persistence of disease 

[12, 13]. In this section, I shall determine the basic reproduction number using next generation 

matrix method [11, 14] and effective reproduction number with the method proposed by 

Wallinga and Lipsitch [15]. 

 

 3.1 Disease Free Equilibrium  

System (1) can be reduced by the following conservation relation Hr = H - (Hs + Hi). Then the 

system (1) can be rewritten as 
𝑑𝑀𝑎

𝑑𝑡
= 𝐾𝛿𝑀𝑎 (1 −

𝑀𝑎

𝐶
) − (𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎)𝑀𝑎  

𝑑𝑀𝑠

𝑑𝑡
=  𝛾𝑚𝑀𝑎 − 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑠 

𝑑𝑀𝑖

𝑑𝑡
= 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑖                                                                   

𝑑𝐻𝑠

𝑑𝑡
= 𝜇ℎ(𝐻 − 𝐻𝑠) − 

𝑏𝛽ℎ 𝑀 𝑖𝐻𝑠

𝐻
  

𝑑𝐻𝑖

𝑑𝑡
= 

𝑏𝛽ℎ𝑀𝑖𝐻𝑠

𝐻
− (𝜇ℎ + 𝛼ℎ)𝐻𝑖  

In order to determine the equilibrium points of the system (2) and expression for R0 at the 

beginning of the epidemic, we solve the following algebraic system corresponding to Hi = 0. 

𝐾𝛿𝑀𝑎 (1 −
𝑀𝑎

𝐶
) − (𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎)𝑀𝑎= 0 

𝛾𝑚𝑀𝑎 − 
𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑠 = 0 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑖 = 0                                                   

 𝜇ℎ(𝐻 − 𝐻𝑠) − 
𝑏𝛽ℎ𝑀 𝑖𝐻𝑠

𝐻
= 0 

𝑏𝛽ℎ𝑀𝑖𝐻𝑠

𝐻
− (𝜇ℎ + 𝛼ℎ)𝐻𝑖 = 0 

which gives, 𝑀𝑎 = 𝐶 (1 −
𝛾𝑚+𝜇𝑎+𝑐𝑎

𝐾𝛿
) = �̅�𝑎, 𝑀𝑠 =

𝛾𝑚𝐶

𝜇𝑚+𝑐𝑚
(1 −

𝛾𝑚+𝜇𝑎+𝑐𝑎

𝐾𝛿
) = �̅�𝑠,  𝐻𝑖 =

0;  𝐻𝑠 = 𝐻. Therefore the DFE point is 𝐸0 = (�̅�𝑎, �̅�𝑠, 0, 𝐻, 0) provided 𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎 < 𝐾𝛿. 

3.2 Method of Next Generation Matrix 

 Using the next generation matrix method [11, 14], I have derived the expression for R0, 

associated to the disease free equilibrium E0(Ma, Ms, 0, H, 0). Consider the 3rd and 5th 

equations of (2) 

 
 晡�𝑀𝑖

𝑑𝑡
= 

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
− (𝜇𝑚 + 𝑐𝑚)𝑀𝑖 

…………………….(2) 

 

…………………….(3) 
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𝑑𝐻𝑖

𝑑𝑡
=  

𝑏𝛽ℎ𝑀𝑖𝐻𝑠

 𝐻
− (𝜇ℎ + 𝛼ℎ)𝐻𝑖 

The 1st term in each of the equations represents the new infection and the 2nd term represents the 

infection out. Here the vector 𝜙 is the rate of new infections entered in each class and 𝜈 is the 

difference of transfer out, from the compartment and in, into the compartment. Therefore 

𝜙 = [

𝑏𝛽𝑚𝑀𝑠𝐻𝑖

𝐻
𝑏𝛽ℎ𝑀𝑖𝐻𝑠

𝐻

], 𝜈 = [
(𝜇𝑚 + 𝑐 㔳�)𝑀 𝑖

(𝜇ℎ + 𝛼ℎ)𝐻𝑖
]. Let 𝐼 = [

𝑀𝑖

 𝐻𝑖
] and 

 𝑑𝐼

𝑑𝑡
= 𝜙 − 𝜈 

The corresponding Jacobean matrices at disease-free equilibrium 𝐸0 are computed as 

𝐹 =
𝜕𝜙(𝐸0)

𝜕𝑥𝑖
= [

0
𝑏𝛽𝑚�̅�𝑠

𝐻

𝑏𝛽ℎ 0
]  and 𝑉 =

𝜕𝜈(𝐸0)

𝜕𝑥𝑖
= [

(𝜇𝑚 + 𝑐𝑚) 0

0 (𝜇ℎ + 𝛼ℎ)
] 

where, 𝑥1 = 𝑀𝑖 and 𝑥2 = 𝐻𝑖 . The basic reproduction number 𝑅0 is the spectral radius of the 

next generation matrix 𝐹𝑉−1 . 

 𝑅0 = 𝜌(𝐹𝑉−1) = 𝜌 ([
0

𝑏𝛽𝑚�̅�𝑠

𝐻

𝑏𝛽ℎ 0
] ×

1

(𝜇𝑚+𝑐𝑚)(𝜇ℎ+𝛼ℎ)
[
(𝜇ℎ + 𝛼ℎ) 0

0 (𝜇𝑚 + 𝑐𝑚)
])  

= 𝜌 (
1

(𝜇𝑚 + 𝑐𝑚)(𝜇ℎ + 𝛼ℎ)
[ 0

𝑏𝛽𝑚�̅�𝑠

𝐻
(𝜇𝑚 + 𝑐𝑚)

𝑏𝛽ℎ(𝜇ℎ + 𝛼ℎ) 0

]) 

                             = √
𝑏2𝛽ℎ𝛽 𝑚�̅�𝑠

𝐻(𝜇𝑚+𝑐𝑚)(𝜇ℎ+𝛼ℎ)
      

3.3 Estimating R0 for Actual Epidemics 

There are quite good number of methods exist in the literature by which one can evaluate R0 

using incidence data [16]. In this article, we estimate R0 from the initial growth phase of the 

epidemics. Following [5, 8] we suppose that at the initial phase of epidemic, the cumulative 

number of cases, c(t) varies as exp(Λt), where Λ is the force of infection which can be 

evaluated. With these assumptions, the time evolution of the infected host and vector for the 

initial phase of epidemic has the following form 

Hi ~ Hi0 exp(Λt) 

Mi ~ Mi0 exp(Λt)             

where Hi0 and Mi0 are constant, evaluated from the given data. Further at the earlier phase of an 

epidemic, the number of infected hosts and vectors can be assumed to be very small and 

therefore, the expression of the susceptible human and vectors from the model (2) are given by 

𝑀𝑠 =  �̅�𝑠, 𝐻𝑠 =  𝐻. 

Now, 𝐻𝑖0Λexp(Λt) =  
𝑏𝛽ℎ𝑀𝑖0𝐻𝑠

𝐻
exp(Λt) − (𝜇ℎ + 𝛼ℎ)𝐻𝑖0exp(Λt)     

      ⇒ [
Λ

(𝜇ℎ+𝛼ℎ)
+ 1]𝐻𝑖0 = 

𝑏𝛽ℎ

(𝜇ℎ+𝛼ℎ)
𝑀𝑖0 

 and   𝑀𝑖0Λexp(Λt) =  
𝑏𝛽𝑚𝑀𝑠𝐻𝑖0

𝐻
exp(Λt) − (𝜇𝑚 + 𝑐𝑚)𝑀𝑖0exp(Λt) 

      ⇒ [
Λ

(𝜇𝑚+𝑐𝑚)
+ 1]𝑀𝑖0 = 

𝑏𝛽𝑚�̅�𝑠

𝐻(𝜇𝑚+𝑐𝑚)
𝐻𝑖0 

Therefore  [
Λ

(𝜇ℎ+𝛼ℎ)
+ 1] [

Λ

(𝜇𝑚+𝑐𝑚)
+ 1] =  

𝑏𝛽ℎ

(𝜇ℎ+𝛼ℎ)
×

𝑏𝛽𝑚�̅�𝑠

𝐻(𝜇𝑚+𝑐𝑚)
= 𝑅0

2 

…………………….(5) 

…………………….(4) 
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               ⇒ 𝑅0
2 = [

Λ

(𝜇ℎ+𝛼ℎ)
+ 1] [

Λ

(𝜇𝑚+𝑐𝑚)
+ 1] 

 

3.4 Effective Reproduction Number R(t) 

When an epidemic starts in a partially susceptible population, the control measure of the 

disease should be taken on the basis of the effective reproductive number or time-varying 

reproduction number R(t) because the value of R(t) provides information about the severity of 

the disease over different time. The effective reproductive number R(t) is defined as the 

number of secondary infections that arise from a typical primary case with a symptom onset at 

the week 𝑡 [15]. The estimate provides useful information about the intervention strategies to 

be needed for controlling the outbreak. There are several technique for estimation of R(t) [17]. 

Here I have estimated R(t) from the given data using the renewal equation of birth process [15, 

8]. 

𝐹(𝑡) =  
𝑏(𝑡)

∫ 𝑏(𝑡 − 𝑎)𝑔(𝑎)𝑑𝑎
∞

𝑎=0

      ………… . . (7) 

where, 𝑏(𝑡) represents the number of new cases at the day 𝑡 and 𝑔(𝑎) is the generation interval 

distribution for the disease, which is defined as the probability distribution function of the time. 

The rates of leaving infection classes, s1 =  𝜇𝑚 + 𝑐𝑚  and s2 = 𝜇ℎ + 𝛼ℎ  are constant 

quantities. Therefore the generation interval distribution is the convolution of two exponential 

distributions 𝑠1𝑒
−𝑠1𝑡 and 𝑠2𝑒

−𝑠2𝑡 with a mean 

 𝑇𝑐  =  
1

𝑠1
+

1

𝑠2
. 

Following [18] the explicit expression of the density function is given by  

𝑔(𝑡) = ∑
𝑠1𝑠2 exp(−𝑠𝑖𝑡)

∏ (𝑠𝑗 − 𝑠𝑖)
2
𝑗=1,𝑗≠𝑖

2

𝑖=1

      ……… . (8) 

The above expression is valid when the force of infection Λ satisfies 𝛬 >  min(−𝑠1,−𝑠2)  

[16]. Also we have ∫ 𝑔(𝑡)𝑑𝑡
∞

0
 =  1. Substituting 𝑔(𝑡) into the equation (7) and using the 

epidemiological data we can compute 𝐹(𝑡) and since the number of human secondary cases 

derived from a human primary case is equal to 𝑅2(𝑡), then 𝑅(𝑡)  =  √𝐹(𝑡). 

 

4. Local Stability Analysis  

Equilibrium points of a dynamical system are the state of the system when there is no change of 

the variables. It is important to investigate the local stability of the equilibrium points to predict 

about the system. In this section the local stability of the disease free equilibrium point and 

endemic equilibrium point has been investigated. 

 4.1 Local Stability Analysis of Disease Free Equilibrium 

Theorem: The disease free equilibrium 𝐸0 = (�̅�𝑎, �̅�𝑠, 0, 𝐻, 0) of the system corresponding to 

the model (2) is locally asymptotically stable if 𝑅0 < 1 otherwise it is unstable. 

Proof: The Jacobean matrix of the model (2) at 𝐸0 is 

…………………….(6) 
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𝐽𝐸0
=

[
 
 
 
 
 
 
 

−𝑀0 0                  0

𝛾𝑚 −
𝑏𝛽𝑚𝐻𝑖

𝐻
− 𝑄                 0

0  
𝑏𝛽𝑚𝐻𝑖

 𝐻
               −𝑄

              0

          0

             0

                  

0

−
𝑏𝛽𝑚𝑀𝑠

𝐻
𝑏𝛽𝑚𝑀𝑠

𝐻

       0                0                    −
𝑏𝛽ℎ𝐻𝑠

𝐻

       0                0                       
𝑏𝛽ℎ𝐻𝑠

𝐻

−𝜇ℎ −
𝑏𝛽ℎ𝑀𝑖

𝐻
            0

   
𝑏𝛽ℎ𝑀𝑖

𝐻
−(𝜇ℎ + 𝛼ℎ) ]

 
 
 
 
 
 
 

𝐸0

   

where 𝑃 = (𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎), 𝑀0 = (−𝐾𝛿 + 𝑃 +
2𝐾𝛿𝑀𝑎

𝐶
) |𝐸0

  and  𝑄 = (𝜇𝑚 + 𝑐𝑚) 

The Eigen values of  𝐽𝐸0
 are the roots of the characteristic equation 

|

|

−𝑀0 − 𝜆      0                  0
𝛾𝑚 −𝑄 − 𝜆                 0
0       0                −𝑄 − 𝜆

      0
      0
      0

                  

0

−
𝑏𝛽𝑚�̅�𝑠

𝐻
𝑏𝛽𝑚�̅�𝑠

𝐻

       0                0                    −𝑏𝛽ℎ

       0                0                       𝑏𝛽ℎ
 
       −𝜇ℎ − 𝜆   0

     0   −(𝜇ℎ + 𝛼ℎ) − 𝜆

|

|
=0 

⟹ ( ��0 + 𝜆) (𝑄 + 𝜆)( 𝜇ℎ + 𝜆)(𝜆2 + 𝜆𝜎1 + 𝜎2) = 0 

Where 𝜎1 = (𝜇𝑚 + 𝑐𝑚) + (𝜇ℎ + 𝛼ℎ) and 𝜎2 = (𝜇𝑚 + 𝑐𝑚)(𝜇ℎ + 𝛼ℎ)(1 − 𝑅0
2). 

The eigenvalues of 𝐽𝐸0
 are the following. 

𝜆1 = −𝑀0 = −𝐾𝛿 + 𝑃 +
2𝐾𝛿�̅�𝑎

𝐶
= ( 𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎) − 𝐾𝛿, 

𝜆2 = −(𝜇𝑚 + 𝑐𝑚),   𝜆3 = −𝜇ℎ. 

Other two eigenvalues are obtained from 𝜆2 + 𝜆𝜎1 + 𝜎2 = 0. 

𝜆4 =
1

2
(−𝜎1 + √𝜎1

2 − 4𝜎2) and 𝜆4 =
1

2
(−𝜎1 − √𝜎1

2 − 4𝜎2). 

Now, 𝜎1
2 − 4𝜎2 = {( 𝐷𝑚 + 𝑐𝑚) + (𝜇ℎ + 𝛼ℎ)}2 − 4(𝜇𝑚 + 𝑐𝑚)(𝜇ℎ + 𝛼ℎ)(1 − 𝑅0

2). 

If 𝑅0 > 1, then (1 − 𝑅0
2) < 0 therefore  √𝜎1

2 − 4𝜎2 > 𝜎1. In this case 𝜆4 > 0 so the system is 

unstable. 

If 𝑅0 < 1, then (1 − 𝑅0
2) > 0 therefore  √𝜎1

2 − 4𝜎2 < 𝜎1. In this case the real part of all the 

eigen values are negative so the system is asymptotically stable. 

 

 4.2 Endemic Equilibrium  

Let 𝐸∗ = (𝑀𝑎
∗ , 𝑀𝑠

∗, 𝑀𝑖
∗, 𝐻𝑠

∗, 𝐻𝑖
∗)  be any arbitrary positive endemic equilibrium of the model (3).  

Let us define 

                      𝜆1
∗ =

𝑏𝛽ℎ𝑀𝑖
∗

𝐻
   

              and  𝜆2
∗ =

𝑏𝛽𝑚𝐻 𝑖
∗

𝐻
 

Substituting the value of  𝜆1
∗   and  𝜆2

∗   in (3) we obtain the following endemic equilibrium in 

terms of   𝜆1
∗   and  𝜆2

∗  . 

 𝐻𝑠
∗ =

𝜇ℎ 𝐻

𝜇ℎ+𝜆1
∗ , 𝐻𝑖

∗ =
  𝜆1

∗𝐻𝑠
∗

𝜇ℎ+𝛼ℎ
, 𝑀𝑠

∗ =
𝛾𝑚𝑀𝑎

∗

𝜆2
∗+𝜇𝑚+𝑐𝑚

 , 

 𝑀𝑖
∗ =

𝜆2
∗𝑀𝑠

∗

𝜇𝑚+𝑐𝑚
 and 𝑀𝑎

∗ =
𝐶{𝐾𝛿−( 𝑚+𝜇𝑎+𝑐𝑎)}

 Ā𝛿
 

…………………………(9) 

…………………………(10) 
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Substituting the value of  𝑀𝑖  and  𝐻𝑖  from (10) in (9) and simplifying we obtain 

               𝜆1
∗ =

𝑏𝛽ℎ 𝜆2
∗𝛾𝑚𝑀𝑎

∗

𝐻(𝜇𝑚+𝑐𝑚)(𝜆2
∗+𝜇𝑚+𝑐𝑚)

   

and        𝜆2
∗ =

 Ā𝛽𝑚 𝜆1
∗𝜇ℎ

(𝜇ℎ+𝛼ℎ)(𝜇ℎ+𝜆1
∗ )

 

Using the expression of  𝑅0 from (4) we obtain the following expression for  𝜆1
∗   and  𝜆2

∗   in 

terms of 𝑅0 . 

(11) ⇒  𝜆1
∗ =

𝜇ℎ(𝜇𝑚+𝑐𝑚)(𝜇ℎ+𝛼ℎ)(𝑅0
2−1)

𝑏𝛽𝑚𝜇ℎ+(𝜇𝑚+𝑐𝑚)(𝜇ℎ+𝛼ℎ)
 

and      𝜆2
∗ =

𝑏𝛽𝑚𝜇ℎ(𝜇𝑚+𝑐𝑚)(𝑅0
2−1)

𝑏𝛽𝑚𝜇ℎ+(𝜇𝑚+𝑐𝑚)(𝜇ℎ+𝛼ℎ)𝑅0
2 

Using the relation (12) we can evaluate 𝐸∗ in terms of 𝑅0. Therefore, if   𝑅0 > 1 then, (𝑅0
2 −

1) > 0 so from (12)  𝜆1
∗   and  𝜆2

∗   are positive consequently there exists a unique positive 

endemic equilibrium. 

Theorem: The positive endemic equilibrium, 𝐸∗ = (𝑀𝑎
∗ , 𝑀𝑠

∗, 𝑀𝑖
∗, 𝐻𝑠

∗, 𝐻𝑖
∗) of the system (2) is 

unique if 𝑅0  >  1.  

 

4.3 Local Stability Analysis of Endemic Equilibrium 

The Jacobean matrix 𝐽 of the system (2) evaluated at the endemic equilibrium point 𝐸∗ =

(𝑀𝑎
∗ , 𝑀𝑠

∗, 𝑀𝑖
∗, 𝐻𝑠

∗, 𝐻𝑖
∗) is given by  

𝐽𝐸∗ =

[
 
 
 
 
 
 
 
 
 

−𝑀0 0 0

𝛾𝑚 −
 𝑏𝛽𝑚𝐻𝑖

𝐻
− 𝑄 0

0
𝑏𝛽𝑚𝐻𝑖 𝑖

 𝐻
−𝑄

              0

              0

              0

                  

0

−
𝑏𝛽𝑚𝑀𝑠

∗

𝐻
𝑏𝛽𝑚𝑀𝑠

∗

𝐻

      0            0          −
 潬�𝛽ℎ𝐻𝑠

∗

𝐻

      0            0              
𝑏𝛽ℎ𝐻𝑠

∗

𝐻

−𝜇ℎ −
𝑏𝛽ℎ𝑀𝑖

∗

𝐻
     0

𝑏𝛽ℎ𝑀𝑖
∗

𝐻
−(𝜇ℎ + 𝛼ℎ)

]
 
 
 
 
 
 
 
 
 

 

Where 𝑃 = (𝛾𝑚 + 𝜇𝑎 + 𝑐𝑎) and 𝑀0 = −𝐾𝛿 + 𝑃 +
2𝐾𝛿𝑀𝑎

∗

𝐶
 . 

The eigenvalues of  𝐽𝐸0
 are the roots of the characteristic equation 

|
|

−𝑀0 − 𝑙   0    0
𝛾𝑚 −𝑀1 − 𝑙    0
0       𝑀1 − 𝑀3 −𝑀3 − 𝑙

         
0
0
0

           
0

−𝑀2

  𝑀2

 
 0                  0            −𝑀4

       0                  0                𝑀4      
   

−𝑀5 − 𝑙    0
   𝑀5 − 𝜇ℎ   −𝑀6 − 𝑙

|
|
=0 

⟹ (𝑀0 + 𝑙) (𝑀3 + 𝑙)(𝑙3 + 𝑎1𝑙
2 + 𝑎2𝑙 + 𝑎3)=0  ……………(13) 

where 𝑎1 = 𝑀1 + 𝑀5 + 𝑀6, 𝑎2 = 𝑀1𝑀5 + 𝑀1𝑀6 + 𝑀5𝑀6 − 𝑀2𝑀4, 𝑎3 = 𝑀1 𝑀5𝑀6 −

𝑀2𝑀4𝜇ℎ and 

𝑀1 =
𝑏𝛽𝑚𝐻𝑖

𝐻
+ (𝜇𝑚 + 𝑐𝑚), 𝑀2 =

𝑏𝛽𝑚𝑀𝑠
∗

𝐻
 ,  𝑀3 = (𝜇𝑚 + 𝑐𝑚), 𝑀4 =

𝑏𝛽ℎ𝐻𝑠
∗

𝐻
, 𝑀5 = 𝜇ℎ +

𝑏𝛽𝑚𝑀𝑖
∗

𝐻
, 

𝑀6 = (𝜇ℎ +  𝛼ℎ). 

…………………………(11) 

…………………………(12) 
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According to Routh-Hurwitz criterion the real part of the roots of the cubic equation 𝑙3 +

𝑎1𝑙
2 + 𝑎2𝑙 + 𝑎3 = 0  is negative if 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0 and 𝑎1𝑎2 > 𝑎3. Therefore the 

endemic equilibrium point 𝐸∗ of the system (2) is locally asymptotically stable if 𝐾𝛿 >

𝑃, 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0 and 𝑎1𝑎2 > 𝑎3 . 

  

5. Numerical Analysis:  

The model (2) is a system of non-linear ordinary differential equations whose analytical 

solution is hardly possible. So a suitable numerical technique must be used to solve the system 

of equations and the expressions used in our above theoretical study. Let us take a help of 

MATLAB to get the numerical solution on the basis of estimated parameter values in the table 

2. I investigate numerically the value of the endemic equilibrium point and its stability with the 

parameters   𝛿 =  10, μm = 0.05, μa =  0.3, γm =  0.1, μh = 0.16/365, αh =  0.1, K =

 0.5, C =  200000000, b =  1, βm =  0.75, βh =  0.75, ca =  0.5, cm =  0.5, H =

100000000. 𝐸∗ = (164000000, 29806000, 11964, 0.0051, 0.000004) and eigenvalues of 

the Jacobian matrix JE* are 𝜆1  =  −4.1000; 𝜆2 = −0.5500; 𝜆3 = −574900; 𝜆4 =

 611.8972; 𝜆5 =  0.000046. Therefore the endemic equilibrium point is unstable. In this case 

R0 = 1.7439 obtained from the expression (4). Figure 3 showing the level of control effort of 

mosquito to drop down the basic reproduction number below unity. So in this case control 

mechanisms should be applied to the mosquito population, mostly in places where high 

number of dengue hemorrhagic case was notified. Intensity of control strategies must be 

according to the value of effective reproduction number R(t). However we may calculate this 

effective reproduction number R(t) for any dengue affected region if the data of new dengue 

infection is available (figure 2). Suppose the dengue situation in some city is given by the total 

number of new dengue infected people admitted in all the hospital of the city per week. 

Table 3: Hypothetical dengue data 

week 1 2 3 4 5 6 7 8 9 10 11 12 

New 

cases 

50  100  120  250  500  1000  1500  2500 3000 2600  2400  3100  

week 13 14 15 16 17 18 19 20 21 22 23 24 

New 

cases 

2700  2400  2000  1000 900  500  200  100 50  20  10  2 

 

From this data of the table 3, it is found that correlation coefficient R = 0.9883 (figure 1) and 

the force of infection Λ = 0.38 using (5). Substituting the value of Λ in the equation (6) we can 

obtain the value of the basic reproduction number R0 = 2.106704, which is nearly equal to the 

value of R0 obtained from the expression (4). Here I investigate numerically the value of the 

disease free equilibrium point and its stability with the parameter values  𝛿 =  10, μm =

0.05, μa =  0.3, γm =  0.1, μh = 0.1/365, αh =  0.1, K = 0.5, C = 200000000, b =

 0.5,  βm = 0.75, βh = 0.75, ca = 0.5, cm = 0.5, H =  10000000.   The disease free 

equilibrium point is 𝐸0  = 108 (1.64, 0.2982, 0, 1.0, 0) and eigenvalues of the Jacobian matrix 

JE0 are 𝜆1 = −4.1;  𝜆2 = −0.55; 𝜆3 = −0.00027397; 𝜆4 = −0.021; 𝜆5 = −0.6293 . 

Therefore the disease free equilibrium point is asymptotically stable. In this case R0 = 0.872 

obtained from the expression (4).  
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Figure 1: First figure is the time series of the hypothetical weekly dengue data. Second 

figure includes the scattered diagram of the weekly number of new cases against the 

cumulative number of cases and the list square straight line fit to obtained Ë. 

 

 

Figure 2: Value of R0 decreasing more rapidly when control effort is paid on aquatic 

phase. 
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Figure 3: Value of R0 decreasing more rapidly when control effort is paid on aquatic 

phase. 

 

 6. Conclusions:  

Here I couple an S-I-R model for human population and an S-I model of mosquito population. 

The estimated parameter values from [8] have been used for the numerical analysis of the 

model. The basic reproduction number has been calculated analytically using the next 

generation matrix method. Then I estimation of the basic reproduction number R0 and effective 

reproduction number R(t) for actual epidemic using data. After that I discuss the stability of 

disease free and endemic equilibrium points. It is found that the disease free equilibrium point 

is stable for R0 < 1, otherwise it is unstable. The endemic equilibrium point exists for R0 > 1. In 

the figure 3, I have plotted the basic reproduction number with respect to control parameters in 

aquatic and adult phase and observed that if the controls increase the basic reproduction 

number (R0) decreases and become less than one. The basic reproduction number has been 

evaluated using the expression (4) and verified with the basic reproduction number (6) in terms 

of force of infection which is obtained analyzing the data. I have discus the method for 

estimating the effective reproduction number from a given data which determine the intensity 

of control effort.  
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