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ABSTRACT 

In this article, we propose a non-selective harvesting of a predator-prey scheme, utilising a rational harvesting quota 

rather than an indiscriminate one. In this model, the prey populations adhere to the principle of logistic growth. The 

successful reaction of predator's to prey density has been structured in such a way that any predator's realistic 

reaction to prey density is almost invariable as the prey population grows. The boundedness of the proposed model is 

verified. Eigenvalue procedure is used to analyze the existence of the consistent states as well as their local and 

global stabilities. The presence of bionomic equilibrium has been represented. Pontryagin's optimum theorem is then 

used to address the issue of deciding the best harvesting strategy. To investigate the impact of environmental 

variability on the harvested structure, we expect white noise stochastic perturbations. The numerical simulation 

confirmed our findings.   
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Introduction   
 

According to latest research, the interaction between predator and prey has become an important aspect to 

consider in the ecology framework model. This system has piqued the interest of biologists. 

Population dynamics is the science which deals and describes the forces acting animal populations and how the 

populations react to these forces. Within fisheries ecology, our main aim is specific. What will happen to the fish 

population. Usually call it as stock when they are subjected to the specific external forces. What will happen to the 

stock means, size of the stock, growth, mortality, structure of the stock yield in other words net population? External 

forces mean, biotic environment such as prey-predators, competitors etc., and human activities. 

  In recent years, the purpose of fisheries management is to guarantee that catches from fish stock are 

ecologically feasible in the long term and benefits to fisheries and communities are maximized. Sea food is the main 

source of protein in the many parts of the world. So, stock sustainability is a universal requirement. In recent years 

the problems related to mathematical understanding of harvesting, bioeconomic yield, bioeconomic equilibrium 

states of multispecies fish population have been drawing an attention in researchers.      

Maximum economic yield (MEY) and maximum sustainable yield (MSY) are the two critical concepts in 

optimum harvesting. Fisheries fall into the category of renewable natural resources. If the pace at which fish are 
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harvested exceeds the rate at which they are reproduced, the fish stock will become extinct. MSY is a natural 

occurrence. MSY refers to the maximum amount of fish capture or yield that can be collected from a given system 

indefinitely without reducing the system's fish population (stock). In other terms, a capture ratio is said to be 

permanent if it is equivalent to the population growth rate and can be sustained indefinitely. 

The maximum economic yield is the amount of yield that coincides with the degree of harvest or commitment 

that maximises the total returns from fishing in the long run. A MEY harvest is recommended because it is the 

capture amount that allows society to achieve its maximum potential. 

Many scholars investigated either prey population harvesting [1, 2, 3, 4], predator population harvesting 

[5,6,7,8,9,10], or predator and prey population harvesting [11,12]. For example, in [1,12,13], the majority of 

predator-prey models with harvesting were correlated with economic issues such as the most benefit problem, 

taxation impact, and overall discounted net revenue problem. 

In the last few decades, there has been an increase of study involvement in obtaining more detailed indicators 

of input impact in the issue of bioeconomic analysis of renewable resource exploitation, such as fisheries and 

forestry. Kar [14] and Chakraborty [15] investigated the prey-predator paradigm in fisheries, while Tapas et al.[16], 

Ganguli at el [17], Chaudhuri and Kar [18] investigated the bioeconomic component of the prey predator method and 

found that increasing harvesting activities result in population declines. 

Bioeconomic modelling of habitant fisheries relationships was reported by Naomi S Foley [19] and colleagues. They 

attempted to explain the essence of the relations between the role of inhabitants and the economic activities they 

promote in this paper. Lowis W. Botsford investigated fisheries conservation shortcomings to achieve primary 

sustainability [20].  

In the preset study, we considered the analytical model for one prey – two predator system with logistic growth rates 

and Holling type response. However, we harvested only predator population. Several types harvesting function have 

been studied particularly the following three types (1) Constant harvesting (2) Proportionate harvesting (3) Nonlinear 

harvesting. We have been considered the one prey and two predator system with non linear harvesting. We addressed 

the system's boundedness and the presence of a possible interior equilibrium condition, as well as local stability. The 

best harvesting method is often discussed using Pontryagin's optimum theorem. To investigate the impact of 

environmental variability on the harvested structure, we expect white noise stochastic perturbations. Numerical 

simulations are performed to confirm our analytical study. 

   

Modeling of the problem 

  
The dynamical structure is analysed in the following manner. 

1

1

1
dx x mxy nxz

r x
dt K a x a x

 
    

      

 

2

2

1
dy y mxy

r y
dt K a x

 
   

 
            (1) 
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3

3

1
dz z nxz

r z
dt K a x

 
   

 
 

where ,x y  and z  represents the sizes of the prey, predator-1 and  predator-2 population at time 

;t 1 ,K environmental carrying capacity of the prey; 2 ,K  environmental carrying capacity of the  predator-1 and 3K  

predator-2 carrying capacity; ,   are conversion factors (we consider   0 , 1 ,    since the whole biomass of 

the prey is not converted into predator biomass. ,m n  are maximal relative increases of predation, 1 2 3, ,r r r are the 

intrinsic growth rates of the prey, predator-1 and predator-2 respectively, a  is Michaelis-Menten constant and 

  ,E E t
 
is effort function. 

Fishery figures usually provide details under the heading fishing effort, which is calculated in units suitable for 

the fishery in question, according to Clark [21]. Let h denotes the rate at which a fish species is removed or 

harvested per unit of time. Almost always, the ratio of capture separated by commitment is used as a rough indicator 

of the total stock size of the fish community. Since the catch-per-unit-effort is relative to stock scale, we'll call this 

the grab per unit effort hypothesis, or that h cEx   where   E  denotes effort and c is catchability coefficient is 

constant. This function has certain undesirable features, such as a random fish search, an equal probability of being 

captured with each fish, linear increase of h with E for a fixed ,x and unbounded linear increase of h with x for a 

fixed .E  

In the functional form, these limitations are completely eliminated,  
   

   
1

1 2

c E t x t
h t

l E t l x t

  
  

 Proposed first 

by Clark. It is noticed that   1 1/h c l x  as E  for a fixed value of x  and  1 2/h c l E  as 

x  for a fixed value of .E  

The parameter 1l  is proportional to the ratio of stock level to grab speed at higher levels of effort, and the parameter 

2l  is proportional to the ratio of effort level to seize rate at higher stock levels. All of the parameters are assumed to 

be positive. 

The term "predation" has traditionally been described as mxy . In a wider sense, mxy
 
may be thought of as a 

predator's tropic system or practical response to prey density. We don't use the term "predation" in this context since 

it means that as the prey population expands endlessly with a small and fixed predator population, predation tends to 

infinity. As a consequence, predation is described as 

mxy

a x
as 

x

mxy
Lt my

a x



and 

xz

a x




as 

x

xz
Lt z

a x








 

Assuming that both predator-1 and predator-2 are subjected to a combined harvesting effort ,E we may written as  

1

1

1
dx x mxy nxz

r x
dt K a x a x

 
    

  
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1
2

2 1 2

1
c Eydy y mxy

r y
dt K a x l E l y

 
    

  
           

              (2) 

2
3

3 3 4

1
c Ezdz z nxz

r z
dt K a x l E l y

 
    

  
 

where 1c  and 2c  coefficients of catchability for the two predators. The catch rate functions are taken as 1

1 2

c Ey

l E l y
 

and 2

3 4

.
c Ez

l E l y
 Here, 1 2 3 4, , ,l l l l are positive constants. The ratio of

1 ,i

i

r

c


(where 1, 2i  ) of the biotic potential 

 ir  to the coefficient of catchability  ic is known as the species biotechnical productivity. The structure of the 

manipulated mechanism (equation (2)) will now be investigated. 

  

Boundedness of the scheme 

Theorem (1): The solutions of the system (2) which start in 
2R

 are uniformly bounded. 

Proof:  We define the function  
1 1

, ,x y z x y z
 

                        (3) 

The derivative of (3) w.r.t t  is  

 
   

32 1 2
1

1 2 1 2 3 3 4

, , 1 1 1
rr c Ey c Ezx y z

x y z r x y z
K K l E l y K l E l y   

    
            

      
 

For any 0,u  we get  

 

 

32 1
1

1 2 1 2 3

2

3 4

1 1 1
rr c Eyx y z

u r x y z
K K l E l y K

c Ez u u
ux y z

l E l y

  

  

    
             

     

   


 

  32
1

r ur u
u r u x y z

 

    
         

   
 

1 1 2 2 3 3u K D K D K D L       , as 1 2 30 ,0 ,0x K y K z K       

Where 
   1 1 2 2 3 3, ,

, ,
x y z

L Max K D K D K D  and
32

1 1 2 3, ,
r ur u

D r u D D
 


     

By the theory of differential inequality, we obtained  
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     0 , , 1 (0), (0), (0)ut utL
x y z e x y z e

u

       

As t  , the above inequality becomes  0
L

u
    

Hence, all the solutions of the system (2) are confined in the region 

  3, , : , any 0
L

x y z R
u

  
       

 
 

 

Equilibria of the scheme 

  
Here we considering only positive equilibrium point and it is very difficult to solve the equations 

0, 0 & 0
dx dy dz

dt dt dt
    in equation (2). Thus, we can assume all the three values are non-negative. Therefore, 

interior equilibrium point is existing. 

 

Local Stability Analysis of the scheme 

 

The Jacobian matrix of the system (2) is given by 

   

   

   

1

2 2

1

2 1 2

2 2

2 1 2

3 2 4

2 2

3 3 4

0

0

r x mxy nxz mx nx

K a x a xa x a x

r y c l Eymay
J

Ka x l E l y

r z c l Eznaz

Ka x l E l z





 
     

   
 
   
  
 
 

  
  

 

The characteristic equation is given by 
3 2

1 2 3 0P P P       

where 

       
31 2 1 2 2 4

1 2 2 2 2

1 2 31 2 3 4

r zr x r y c l Ey c l Ezmxy nxz
P

K K Ka x a x l E l y l E l z


      

   
 

             

2

1 2 1 1 2 2 2 1 2 1 2

2 2 2 2 2 2 2

1 2 1 1 2 2 2 1 2 1 2

r r xy rc l Exy r ymxy r ynxz mc l Exy nc l Eyz

K K K l E l y K a x K a x a x l E l y a x l E l y
    

      
 

            (4) 

       

2

2 3 3 1 22 2 4 1 2 2 4

2 2 2 2

2 3 2 3 4 3 1 2 1 2 3 4

r r yz r c l Eyzr c l Eyz c c l l E yz

K K K l E l z K l E l y l E l y l E l z
  

   
                    

(5) 
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             

2 2

1 3 3 3 1 2 4 2 4 2 4

2 2 2 2 2 2 2

1 3 3 3 1 3 4 3 4 3 4

r r xz mr xyz nr xz rc l Exz mc l Exyz nc l Exz

K K K a x K a x K l E l z a x l E l z a x l E l z
    

      
 

             

               (6) 

   

2 2

3 3

m axy n axz

a x a x

 


 
           

               (7) 

        

       2 equatins 4 5 6 7P      

         

   

2

3 2 4 1 2 1 2
3 2 2 2 2 3

3 1 23 4 1 2

2

2 1 2

3 2

2 1 2

r z c l Ez r x r y c l Eymxy nxz m axy
P J

K K Kl E l z a x a x l E l y a x

r y c l Eyn axz

Ka x l E l y





     
              

              

 
   

   

 

Therefore, given system is locally asymptotically stable if 1 2 30, 0, 0P P P   and 1 2 3 0.P P P   

 

 

Bionomic equilibrium 

  
The term "bionomic equilibrium" refers to the combination of biological and economic equilibrium which is given 

by  0.x y z      when the net revenue gained from the sale of harvested biomass (TR) approaches the total cost 

(TC) of harvesting effort, the economic equilibrium is said to have been reached. 

Allow for a constant ,C  fishing cost per unit effort, as well as a constant 1,p
 
prey biomass of prey and 2p  

predator animals and it is constant. 

For every given moment, the economic rent (net revenue) is calculated. 

  1 1 2 2

1 2 3 4

, ,
p c y p c z

y z E C E
l E l y l E l z


 

   
  

         

                (8) 

While the harvesting cost per unit effort is not a constant, we regard it as such for the sake of convenience. Now,  

1
2

2 1 2

0 1
c Edy y mx

r
dt K a x l E l y

 
     

  
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1 1 2 2 2

2 2

1 1
y mx y mx

c E l E r l y r
K a x K a x

       
            

       
 

2 2

2

1 1 2

2

1

1

y mx
l y r

K a x
E

y mx
C l r

K a x





  
   

  
  

    
  

 

Here E is positive when  

1
2

1 2

1 .
C y mx

r
l K a x

 
   

         

     

               (9) 

Similarly  

2
3

3 3 4

0 1
c Edz z nx

r
dt K a x l E l z

 
     

  
 

2 3 3 4 3

3 3

1 1
z nx z nx

c E l E r l z r
K a x K a x

       
           

          
 

4 3

3

2 3 3

3

1

1

z nx
l z r

K a x
E

z nx
C l r

K a x





  
   

  
  

    
  

 

Here E is positive when  

2
3

3 3

1
C z nx

r
l K a x

 
   

                     

  

            (10) 

As a result, the positive equilibrium solution is found at a certain point on the 

curve.

4 32 2

32

1 1 2 2 3 3

2 3

11

1 1

z nxy mx
l z rl y r

K a xK a x

y mx z nx
C l r C l r

K a x K a x



 

     
        

      
      

           
            

              

             (11) 

Where 2 30 , 0y K z K   
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The bionomic equilibrium   , ,x y z    of the open access fishery is determined by equation (11) together with the 

condition  

1 1 2 2

1 2 3 4

1 1 2 2

1 2 3 4

0

0

TR TC

p c y p c z
c E

l E l y l E l z

p c y p c z
c

l E l y l E l z

  

 
    

  

  
 

   

   (12) 

 

Optimal harvesting procedure 

The central issue in commercial renewable resource extraction is determining the best trade-off between existing and 

potential harvests. This dilemma is much too difficult to address whether the global, societal, and metaphysical 

aspects of it are included. However, if we just see the dilemma from an economic perspective, we could use the 

traditional time discounting methodology to answer concerns about inter-temporal economic benefits. The concept of 

discounting economic gains (or costs) over time is common in business management. Clark [21] demonstrates that 

the idea of optimising long-term economic rent is impractical since it entails setting the discount rate to zero. 

 
0

, , , , tJ x y z E t e dt


           (13) 

                       

1 1 2 2
1 1

1 2 3 4 1

1 2
2 2 3 3

2 1 2 3 3 4

1

1 1

tp c y p c z x mxy nxz
H c Ee r x

l E l y l E l z K a x a x

c Ey c Ezy mxy z nxz
r y r z

K a x l E l y K a x l E l y

 


 
 


    

          
       

     
            

          

              

            (14) 

The adjoint equations are given by  

 

       
1

1 1 2 32 2 2 2

1

2
1

d H x may naz amr anz
r

dt x K a x a x a x a x

  
  
  

          
       

  (15) 

       

2 2

2 1 1 1 1 1
1 2 22 2 2 2

2 1 2 1 2

2
1 td c l E Pc l EH mx y mx

r e
dt y Ka x a x l E l y l E l y

 
  

  
         

       

         (16) 

   

2 2

3 2 3 2 2 3
1 3 3 2 2

3 3 4 3 4

2
1 td c l E P c l EH nx z nx

r e
dt z a x K a x l E l z l E l z

 
  

  
         

         

               (17) 

We concentrate on locating the problem's optimum equilibrium solution so that we may accept it. 
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4 32 2

32

1 1 2 2 3 3

2 3

11

1 1

z nxy mx
l z rl y r

K a xK a x
E

y mx z nx
C l r C l r

K a x K a x



 

     
        

       
      

           
           

           (18) 

 By using equations (18), (15), (16) and (17), we can obtain the expression 

   3 2

1 2 2 1 2 1 2 1 2 2 2 1 3 1 2 2 2 1 2 3 2 1 2

2

3 1 3 3 2 1 3 2 3 3 1 3 1 3

t

D A B C D A B B A AC C B C A D A B C A B C A B C

B A B B C A B C A B C A B C e 



   

            

         

                     (19) 

where 
d

D
dt

 , 

       
1 1 2 32 2 2 2

1

2
1 , ,

x may naz amr anz
A r A A

K a x a x a x a x

  
      

      

       

2 2

1 1 1 1 1
1 2 2 32 2 2 2

2 1 2 1 2

2
, 1

c l E Pc l Emx y mx
B B r B

Ka x a x l E l y l E l y

 
       

      

   

2 2

2 3 2 2 3
1 2 3 32 2

3 3 4 3 4

2
, 1 ,

c l E P c l Enx z nx
C C r C

a x K a x l E l z l E l z

 
       

    
 

The auxiliary equation of (18) is given by  

3 2

1 2 3 1

tb b b Pe                  (20) 

where 

2

1 3 1 3 3 2 1 2 3 3 3 1 3 1 3P B A B B C AC B A B C A BC                    (21) 

Let 1 2 3, ,    be the roots of the equation (20), then  

31 2 1
2

tt t tP
Ae Be Ce e

Q

        as t  ,   1
2

t P
t e

Q

  constant                   (22) 

Similarly,   2
3

t P
t e

Q

  is also constant.                   (23) 

where, 
3 2

1 2 3Q b b b                                       (24) 

Hence the shadow price  2

tt e remains bounded as t  iff 0A B C    and then 

  1
2 constantt P

t e
Q

   . 

Similarly, we get   2
3 constantt P

t e
Q

   . 
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   

2 2

1 1 2 2 1 2 2 4
2 32 2

1 2 3 4 1 2 3 4

0tp c y p c z c l y c l zH
C e

E l E l y l E l z l E l y l E l z

  
    

         
            

 

   

2 2

1 2 2 4
2 32 2

1 2 3 4

tc l y c l z
e

El E l y l E l z

 
  

    
    

       

                 (25) 

The discounted valuation of potential earnings per unit effort at the steady state effort stage as seen on the right hand 

side. 

By substituting the values of    2 3,t t   in the equation (25), we get 

   

2 2

1 1 2 2 2 4
1 22 2

1 2 3 4

.
P c l y P c l z

p p C
Q Ql E l y l E l z

      
         

          

                (26) 

The equation (25) with the equation (8) gives the optimal equilibrium populations 

, ,x x y y z z      

where    the equation (26) leads to the result  

   

2 2

1 2 2 4

2 2

1 2 3 4

,
c l y c l z

C
l E l y l E l z

 
 

which implies  , , , 0   x y z E
E


  





 

As a result, at an infinite discount rate, the value of potential earnings per unit effort vanishes. Using equation (26) as 

a guide, we arrive at 

       

2 2 2 2

1 1 2 2 2 4 1 1 2 2 2 4

2 2 2 2

1 2 3 4 1 2 3 4

p c l y p c l z P c l y P c l z
C

E Q Ql E l y l E l z l E l y l E l z

  
     
      

 

As each of 1 2,P P is  o  where Q is  2o  , we can find that 
E




is  1o  

. Hence 
E




is a decreasing 

function of 0  . 

As a result, we may infer that 0   contributes to the maximization of 
E



  

Stochastic Analysis 

Environmental noise affects the dynamics of interacting populations, and several scholars have examined 

the dynamical activities of stochastic ecological interacting structures [22, 24]. R.M May [23] discovered that the 

parameters of stochastic systems oscillate about their mean values all the time, and that the solutions do as well. As a 

result of enabling stochastic variations in the variables x , y  about their positive equilibrium value
*E , the 

obligatory mutualism scheme transforms into a stochastic differential equation (SDE). 

  * 1

1 1

1

1 t

x mxy nxz
dx r x dt x x d

K a x a x
 

  
           
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 * 21
2 2

2 1 2

1 t

c Eyy mxy
dy r y dt y y d

K a x l E l y


 

  
           

   

 * 32
3 3

3 3 4

1 t

c Ezz nxz
dz r z dt z z d

K a x l E l y


 

  
           

             (27) 

Where , 1, 2,3i i  are real constants,   , 1, 2,3i

t i t i   are independent standard Wiener processes. To 

investigate the stochastic stability of
*E , consider the linear system (27) of around

*E as follows: 

 ( ) ( ( )) ( ( )) ( )du t f u t dt g u t d t                    (28) 

where 1 2 3( ) ( ( ), ( ), ( ))u t col u t u t u t ; ( ( )) ( )f u t Ju t ;

1 1

2 2

3 3

0 0

( ) 0 0

0 0

u

g u u

u







 
 


 
  

;

  1 2 3( ( ), ( ), ( ))d t col t t t    ;
*

1u x x  ;
*

2u y y  ;
*

3u z z  . 

Let   0 0,nU t t R t R    . Hence 0

3 ( )V C U is a continuous function w.r.t t and a twice continuously 

differentiable function w. r. t to u , we have 

2

2

( , ) ( , ) 1 ( , )
( , ) ( ) ( ) ( )

2

T TV t u V t u V t u
LV t u f u Tr g u g u

t u u

   
    

   
             (29) 

where

1 1

,
V V V

Col
u u u

   
  

   
; 

2 2

2

( , )
; , 1, 2,3

j i

V t u V
i j

u u u

 
 

  
  and T  represents transposition  

Theorem (2): If there exists a function 0

2( , ) ( )V u t C U  satisfying the following 

1 2( , )
p p

K u V t u K u  ; 3( , ) , 0 , 0
p

iLV t u K u K p                   (30) 

Then the trivial solution of (8.4) is exponentially p-stable for 0t  .  

Note that, if in (30), p = 2, then the trivial solution of (28) is globally asymptotically stable [25]. 

Theorem (3): Suppose that 

   
21
12 2

1

1
0

2

r x mxy nxz

K a x a x


  
     
     

, 

 
22 1 2
22

2 1 2

1
0

2

r y c l Ey

K l E l y
  


and 

 
23 2 4
32

3 3 4

1
0

2

r z c l Ez

K l E l z
  


then the zero solution of (28) is asymptotically mean square stable. 

Proof: Let us consider the Lyapunov function  2 2

1 1 2 2

1
( ) , 0

2
iV u w u w u w                  (31) 

The inequalities in (30)are true when p = 2 and we have 
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   

   

   

1
1 1 2 3 12 2

1

2 1 2
2 1 2 22 2

2 1 2

3 2 4
3 1 3 32 2

3 3 4

( )

1
( )

2

T

r x mxy nxz mx nx
LV u w u u u u

K a x a xa x a x

r y c l Eymay
w u u u

Ka x l E l y

r z c l Eznaz
w u u u

Ka x l E l z

Tr g u





                           

  
     

     

  
     

     


2

2
( )

V
g u

u

 
 

 

                   (32) 

We can clearly notice that

12

22

3

0 0

0 0

0 0

w
V

w
u

w

 
  

    
 

 and hence 

2

1 1 12
2

2 2 22

2

3 3 3

0 0

( ) ( ) 0 0

0 0

T

w u
V

g u g u w u
u

w u







 
  

  
 
 

 

with

2
2 2 2 2 2 2

1 1 1 2 2 2 3 3 32

1 1
( ) ( )

2 2

T V
Tr g u g u w u w u w u

u
  

 
          

              

 (33) 

If in (32) we choose   

 
2 12

may mx
w w

a xa x

  
  

 
, then from (33), we have 

     

 

2 2 2 21 2 1 2
1 1 1 2 2 22 2 2

1 2 1 2

2 23 2 4
3 3 32

3 3 4

1 1
( )

2 2

1
0

2

r x r y c l Eymxy nxz
LV u w u w u

K Ka x a x l E l y

r z c l Ez
w u

K l E l z

 



    
           
          

 
    
  

 

As indicated by Theorem (3) the proof is completed. 

 

 

Numerical Simulations 

  
Example1: Taking the parameter values in system (2) are 

1 2 3 1 2 3

1 2 1 2 3 4

1.5; 0.5; 0.4; 65; 66; 5; 0.905; 0.815; 0.95;

10; 0.62; 0.214; 0.037; 241; 0.451; 0.125; 0.52; 0.05;

r r r K K K m

a n c c E l l l l

         

        
 



Annals of R.S.C.B., Vol. 23, Issue 2, 2019, pp. 24-39 

Received 15 October 2019; Accepted 22 December 2019 
 

36 

lsofrscb.rolsofrscb.ro 
http://annalsofrscb.ro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1.The trajectories and phase graphs of system (2) with respect to the above parameter values and positive 

equilibrium is asymptotically stable. 

Example2 By taking the above parameter values as same and for different values of white noise intensities in system 

(27), we can get the following graphs (Fig2, Fig3 and Fig4) and for these parameter values the system (27) satisfies 

the Theorem (3) conditions. From this we can observe that if we increase intensities of white noise then we get rule 

less oscillations when the trajectories are converging to the equilibrium point. 

   

Fig2: For 1 2 3 0.2                                        Fig3: For 1 2 3 0.5      

 

Conclusions  

 
The current research looks at a problem involving one prey and two predators, as well as nonlinear harvesting 

in the predator community. First, we established that the solutions to the model system under consideration are 

bounded. The local asymptotic stability of the interior equilibrium point was then considered. After that, the 

proposed system's bionomic (biological as well as economic) equilibrium is investigated. The convergence of the 



Annals of R.S.C.B., Vol. 23, Issue 2, 2019, pp. 24-39 

Received 15 October 2019; Accepted 22 December 2019 
 

37 

lsofrscb.rolsofrscb.ro 
http://annalsofrscb.ro 

zero benefit line and the biological equilibrium line is at these points. The optimum harvesting strategy is then 

investigated using Pontryagin's maximal theorem. The authors hope to achieve some potentially useful results by 

using the proposed mathematical model and dynamical analysis to address efficient harvesting methods and 

sustainability mechanisms of harvested prey-predator fishery systems of nonlinear harvesting. Furthermore, the 

theoretical findings may be useful for administrative entities formulating regulatory strategies to maintain economic 

optimality while maintaining global sustainability. 

Using a suitable Lyapunov function, we have obtained the requirement for asymptotic stability of positive 

equilibrium point in mean square sense for the stochastic variant of the model system. These conditions depend upon 

1 2 3, &    and the parameters of the model system.  

 

 

 

 

 

 

 

    

 

 

 

Fig4: For 1 2 3 0.9      
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